Statistics in meteorology without tears

Part IV: The psychology of probabilities

21/05/2016

10th Moscow lecture May 2016 Anders Persson, Uppsala

The problems with randomness

We want everything to have a cause, in particular if we are brought up in the Newtonian tradition

We always want to see patterns also in random data

When we indeed see a pattern we think that is shows real relationships

21/05/2016

A surge of books on uncertainty and intuitive statistics

21/05/2016

Some common pitfalls

- 1. Over-confidence
- 2. The Halo Effect
- 3. Representativeness bias
- 4. Confirmation bias
- 5. Availability effect
- 6. Misleading forecast consistency

7. Regression to the mean effect

Examples from meteorology

- -It will surely rain in six days time!
- -Model A is usually best!
- -It either rains or it is dry not half dry!
- -It rains! At least in Riga . . .
- -Model A has nicer graphics in colour
- -Should we really change the forecast?

Regression to the mean deceptions in weather forecast verification

Mean error for the 2m-temperature based on EPS

February 2011 – French stations

ECMWF Forecast Products Users Meeting – 9 June 2011

21/05/2016

February 2011 was around 1¹/₂° warmer than normal

A similar example from the other side of the Channel in March 2012

Mean error of UKMO 2 m temperature forecasts 03772 Heathrow

21/05/2016

10th Moscow lecture May 2016 Anders Persson, Uppsala University

Consecutive or ensemble 30 day forecasts during a period of anomalously warm weather

...tend to arrange themselves around the climate normal when they gradually loose skill

The result gives the impression of a mean error ("bias")

21/05/2016

Т

New question: -Is it possible to forecast temperature changes 365 days ahead with a correlation >70%?

Mean monthly maximum temperature at Heathrow 1948-1977

As might be expected, there is no clear correlation between the mean maximum temperature one year (the x-axis) and the next year $(\underline{Y}_{1/05/2016})$

Mean monthly maximum temperature at Heathrow 1948-1977

However, when we plot the change over 12 months versus the mean max value the first year a clear correlation turns up

Mean monthly maximum temperature at Heathrow 1948-1977

The "trick" becomes 12 month change obvious if we +5 express this year's temperature as an +3+2anomaly: it will +1 correlate around 4 Anomaly -4 -3 71% with the observed change. ...thanks to the "Regression to⁴ the Mean" effect 21/05/2016 13 10th Moscow lecture May 2016 Anders Persson, Uppsala University

Regression to the mean effect in medium range ensemble forecasts

During an anomalous period the ensemble probabilities will, due to *non-systematic* forecast errors, *systematically* drift towards the climatological average.

During a heat wave the weather seems to be cooling in the ensemble forecasts, during a prolonged cold spell the forecasts seem to indicate return to milder conditions.

Example of underestimation of randomness

Has randomness a message?

An example of the "regression to the mean effect"

"Weather"

21/05/2016

10th Moscow lecture May 2016 Anders Persson, Uppsala University 18

END

21/05/2016