Statistics in meteorology without tears

Part III: Decision making from probability forecasts

Assume we are in a region with

adverse weather 30% of the time

9 days/month or 122 days/year.

There is generally a 30\% probability of rain

Assume that adverse weather will

 cause a loss $\mathbf{L}=€ 100$ per day
For a certain occupation the cost

 of protection per day may range from $\mathbf{c}=\boldsymbol{€} \mathbf{0}$ to $\mathbf{c}=\boldsymbol{€} \mathbf{1 0 0}{ }_{\text {(the same as the loss) }}$We can now calculate the average Expected Mean Loss per day, i.e. the average cost and loss per day if there is no forecast information

With no forecast information you can chose to a) protect every day or b) never protect

With forecast information we may minimize our costs, but not escape themcompletely

The cost/Loss at the break even point is the same as the climatological probability ($p=30 \%$)

The local weather forecasters make very

 good forecasts with $\mathbf{8 0 \%}$ being correct.All forecasts were well tuned:

The number of rain forecasts (30) over 100 days matches

	Obs rain	Obs dry
Fc rain	20	10
Fc dry	10	60

This matrix also reflects the actions and their
consequences

Actions were taken
-No actions were taken
From this it is possible to calculate the
Expected mean loss

The expected loss per day for different protection costs C

If the forecasters had chosen to become less categorical it could also have served both low and high cost-loss customers

It allows those who are not sensitive to rain to interpret the ??? as "it might not rain"

These are the expected mean loss for those who interpreted ??? as "it might not rain"

It allows those who are sensitive to rain to interpret the ??? as "it might rain"

	Obs rain	Obs dry
Fc rain	10	0
$? ? ?$	20	20
Fc dry	0	50

These are the expected mean loss for those who interpreted ??? as "it might rain"

And them put them together . . .

But not all of the $\mathbf{1 0 0}$ forecasts are certain

Categorical
Obs Fc R R 20 - 10

Can we quantify that uncertainty?

Non-categorical

Obs R - $F c$		
R	10	0
$? ? ?$	20	20
-	0	50

What to do with a probability p?

1. If you do nothing there is a chance p to lose L.
2. On average the loss will be pL ("risk")
3. If you take protective action it will cost \mathbf{c}
4. Only if $p \cdot L>c$ is it worth while to take action
5. The "break even" point is $\mathbf{p}=\mathbf{c} / \mathrm{L}$

Decision matrix for different people when $P=100 \%$

Ob Prob	R	-
100	10	0
80	8	2
60	6	4
40	4	6
20	2	8
0	0	50

Gains for people with c/L almost 100\%

Decision matrix for people with c/L around 80\%

Ob Prob	R	-				
100	10	0				
80	8	2				
60	6	4				
40	4	6				
20	2	8				
0	0	50	\quad	Ob Fc	R	-
:---:	:---	:---				
R	18	2				
-	12	68				

Gains for people with c/L around 80\%

Decision matrix for people with c/L around 60\%

Ob Prob	R	-
100	10	0
80	8	2
60	6	4
40	4	6
20	2	8
0	0	50

Gains for different people when $P=60 \%$

Decision matrix for people with c/L around 40\%

Ob Prob	R	-
100	10	0
80	8	2
60	6	4
40	4	6
20	2	8
0	0	50

Gains for people with c/L around 40\%

Decision matrix for people with c/L around 20\%

Gains for people with c/L around 20\%

Different users benefit from different parts of the gain

Different users benefit from different parts

Probabilities yield gains for all possible protection costs

END

