Dynamic meteorology without tears

Part V: Rossby's planetary waves

What "is" a Rossby wave? Lunch discussion at ECMWF around 1995:

Scientist: -What about the weekend weather?

AP: -Oh, Fine!

Scientist: -How can you be so sure?

AP: -A big Rossby wave is seen coming in!

Scientist: -But can you see a Rossby wave??

AP: -Rossby obviously saw them in the 1930's!

21/05/2016

- 1898 1919-20
- 1001
- 1921
- 1922-25
- Born in Stockholm, SwedenBjerknes group in BergenStudying aerology in Germany
- Weather forecaster at SMHI

Moves to the United States of America to spread the Bergen school concept
Works on geostrophic adjustment problems
Discovers and explains "his" wave

The Dust Bowl draught years in the US mid-west during the 1930's

Rossby's task: develop method to provide the farmers with 5 day forecasts!

C-G Rossby's planetary waves

c = phase speed, U= zonal flow at 5-6 km, L=wave length, β=df/dy Going west for large L, going east for small L

21/05/2016

The wave equation was used in practical forecasting

For stationary waves (c=0) we can derive their wave length (L_s)

Differences between the current wave length (L) and the stationary (L_s) gave indications about re-positionings (c)

5th Moscow lecture May 2016 Anders Persson, Uppsala University

 $L_{\rm S} = 2\pi \sqrt{\frac{U}{\beta}}$

7

Major troughs on the westernmost side of the big oceans were considered stationary "anchor troughs"

^{ξ} Strengthening zonal flow \rightarrow intermediate waves disappear

R P

Anchor

trough

5th Moscow lecture May 2016 Anders Persson, Uppsala University Anchor

trough

The planetary wave approach was combined with isentropic analysis

21/05/2016

Five-day forecasts from August 1940

FIGURE 35.—Forecast and verification charts of mean 3-kilometer-pressure distribution (millibars) over the United States for the period August 21-25, 1940.

FIGURE 36.—Forecast and verification charts of the mean isontropic-moisture distribution over the United States for the period August 21-25, 1940.

The isobaric channel illustration used by Rossby (1939)

...to which he **wrongly** applied the gradient wind equation and had to publish a new explanation in QJRMS in 1940

Very few seem to have taken notice of the Rossby (1940) correction - and even fewer understood what he meant

In his new derivation 1940 Rossby made use of conservation of absolute vorticity ζ +f= η =const

Such a Constant Absolute Vorticity (CAV) **trajectory** is not a "Rossby wave", as stated in some textbooks

21/05/2016

Relation between <u>stream lines</u> and trajectories in a *progressive* flow

Relation between stream lines and trajectories in a *retrogressive* flow

-Rossby (1940) showed that one and the same CAV trajectory satisfies two types of streamlines (waves)

-Rossby (1940) showed that one and the same CAV trajectory satisfies progressive short waves

-Rossby (1940) showed that the same CAV trajectory satisfies retrogressive long waves

Some meteorologists remained sceptical about Rossby's barotropic approach

But the atmosphere is **baroclinic**

> R.C.Sutcliffe, UKMO

Yes, but it can kinematically be *described* as **barotropic**

C-G Rossby, MISU

Public lecture A Thursday 21 April Anders Persson, Uppsala

The "beta-effect"

The Coriolis parameter f = 2Ωsinφ depends on latitude

The "beta-effect"

21/05/2016

The "beta-effect" gives rise to a slow westward propagation of mass

The subtropical high pressure area ("The Azores High")

The beta effect drives the water slowly westward

Instead we get an asymmetric Gulf Stream circulation

The Sargasso Sea ("Ekman pumping" of the surface debris)

End