Dynamic meteorology without tears

Part 111: Some consequences
of the Coriolis Effect
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The Coriolis effect

A 10 m/s
frictionless motion

V of an object only

10 m/s 79 km affected by the
A Coriolis force, will

( at latitude 60°N
result in an

approximate

circular motion

with a radius of

about 79 km
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The Coriolis effect
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1. Inertia circle motion In oceans
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2. Taylor columns (Inertia circles in a water tank)

Non rotating » Rotating
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Whenever a water
parcel tries to move
away It I1s brought
back by the Coriolis
force in an “inertia
circle”

Any motion “away” has
a component
perpendicular to the
axis of rotation and is
therefore subjected to
the Coriolis effect
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When the water above
the ping-pong ball
tries to move

away It is brought
back by the Coriolis
force in an “inertia
circle”

When the water below
the ping-pong ball
tries to move In
behind it is brought
back by the Coriolis
force in an “inertia
circle”
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3. Winds on our and other planets

The equatorial jet circulation on Jupiter  The hurricanes on the slow rotating Venus

Possible misunderstandings are that the winds on Jupiter are
strong because It rotates rapidly, and the winds on Venus are
weak because It rotates slowly — but the opposite Is true
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The rotation of the earth exerts a constraining
effect on the motion over Its surface

=\ [Inertiacircles for
‘ approx. 30 m/s
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High rotation - strong Coriolis force

Small The flow is only
Inertia slightly super
circles rotational ...

... and closer to the
equator
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P-G. William’s computer simulations
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The relatively “weak”™ equatorial jet stream on Jupiter

Its absolute strengths derives from the size of the planet

per-rationalit
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Slow rotation - weak Coriolis force

The flow Is
highly super
rotational...

Large
Inertia
circles

... and away
from the equator
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P-G. William’s computer stmulations
el n*=

The earth
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The hurricane winds on the slow rotating Venus
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4. The geostrophic wind

How the French Academy in 1859 derived the
geostrophic equation without being aware of Iit!

The Seine

AS g?
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The water In the Seine would be deflected to the right
hand bank of the river — perhaps flooding Paris??

The Seine

Coriolis!
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5. Sloping weather fronts (stratified fluid)
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The slope of frontal surfaces (Margules equation)
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With rotation the Coriolis force tries to turn back the air...
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Margules’s formula

Separating|wall

Max Margules 1856-1920

Rotating box with liquid or gas —
g T(V,—V,)
i tano = < W
The density differences try to f (T _T )
equalize, the Coriolis effect tries W C
to restore
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6. El Nino and la Nina
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USA

Australia
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The Trades put the warm
ocean surface water in
motion eastwards
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Divergent ocean water at the equator

Asia USA
Australia The Trade winds put the AS.
m.
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ocean surface water in
motion and is deflected away
from the equator by the
Coriolis effect
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The cold equator during La Nina

Asia

USA

The divergence of the ocean surface
leads to upwelling of cold water

Australia
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Convergent ocean water at the equator

: USA
Asla
ENifio
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Australia The “anti-trade Wlnd_ puts _the o
ocean surface water in motion -

and is deflected toward the
equator by the Coriolis effect
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The warm equator during El Nino

Asia DE

The convergence of the ocean surface
leads to down welling of warm water

...and keeps the warm water in
Australia | the El Nifio close to the equator
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Monthly Sea Surface Temperature °C

La Nina Conditions Decembzer 1995

20°N '
20

10°N

0~ 26
10°3 2
2055 15

Normal Conditions December 1945
20°N ' ' : : — ' '
30

10°N

0= AS
10°8 KR
2075 . 18

El Nino Conditions December 1297

20°N : ' ' ' — : : a0
10°N

0~ 26
10°8 2
20°8 . : : . 18

100°E 140°FE 1807 140°W 100°W GOW

TAD Project Office/PMEL/NOAS,

21/05/2016 Lecture A Friday 22 April
Anders Persson, Uppsala



21/05/2016

N

29



