Dynamic meteorology without tears Part A:

Rossby's planetary waves

3rd dynamics lecture Anders Persson, Uppsala

What "is" a Rossby wave?

Lunch discussion at ECMWF around 1995:

Scientist: -What about the weekend weather?

AP: -Oh, Fine!

Scientist: -How can you be so sure?

AP: -A big Rossby wave is seen coming in!

Scientist: -But can you see a Rossby wave??

What is a Rossby wave?

Sir Harold Jeffreys 1891-1989

- 1898
- 1919-20
- 1921

- Born in Stockholm, Sweden **Bjerknes group in Bergen**
- Studying aerology in Germany
- Weather forecaster at SMHI 1922-25

1938-39 Discovers and explains "his" wave

The Dust Bowl draught years in the US mid-west during the 1930's

Rossby's task: develop method to provide the farmers with 5 day forecasts!

A routine weather map drawn by Carl-Gustaf Rossby 1924

3rd dynamics lecture Anders Persson, Uppsala

"Grosswetterlage" depicted though five or seven day average maps

High Index Circulation 9-15 Jan 1938 **Zonal Flow**

"Grosswetterlage" depicted though five or seven day average maps

Low Index Circulation 14-20 Nov 1937 Blocked Flow

Pressure contrast between 35^o and 55^o latitude is a measure of the westerly, zonal flow

Motions of the Siberian high Dec 1938

3rd dynamics lecture Anders Persson, Uppsala

C= phase speed, U= zonal flow at 500 hPa, L=wave length, β=df/dy C < 0 for large L C >0 for small L

Rossby and his team discovered the large scale planetary waves

Five-day forecasts from August 1940

FIGURE 35.—Forecast and verification charts of mean 3-kilometer-pressure distribution (millibars) over the United States for the period August 21-25, 1940.

FIGURE 36.—Forecast and verification charts of the mean isentropic-moisture distribution over the United States for the period August 21-25, 1940.

The isobaric channel illustration used by Rossby et al (1939)

...to which he applied the gradient wind equation

Considering only the <u>curvature effect</u> on the gradient wind which is relevant for shorter waves – makes them move east

Considering only the <u>latitude effect</u> on the gradient wind which is relevant for longer waves – makes them move west

Only when the paper was published in 1939 did Rossby realize that he could not use the gradient wind balance - it is only applicable on stationary patterns

So he published a new version in the Canadian edition of QJRMS

Confusion between streamlines (waves) and trajectories has always been one of the main roots of confusion in dynamic and synoptic meteorology

Relation between <u>stream lines</u> and trajectories in a *progressive* flow

Relation between stream lines and trajectories in a *retrogressive* flow

In 1940 a new article is published by C-G Rossby, the war time edition of Quarterly Journal issued by the Canadian branch of the Royal **Meteorological Society**

Very few seem to have taken notice of a Rossby (1940) correction - and even fewer understood what he meant

(Trajectories represented by PV isolines)

3rd dynamics lecture Anders Persson, Uppsala

This is NOT a Rossby wave - as is often taught!

...but a <u>Constant Absolute</u> <u>Vorticity Trajectory</u>!

3rd dynamics lecture Anders Persson, Uppsala

-Rossby (1940) showed that one and the same CAV trajectory satisfies two types of streamlines (waves)

-Rossby (1940) showed that one and the same CAV trajectory satisfies two types of streamlines (waves)

The meteorological E=mc² c = I 4π

c = phase speed, U= zonal flow at 5-6 km, L=wave length, β =df/dy

Going west for large L, going east for small L

How Rossby's wave equation was used in practical forecasting

Quantum mechanical approach

For c=0 Rossby derived the stationary wave length

Differences between the current wave length and the stationary gave indications about repositions

 $L_s = 2\pi_1$

But what "is" it?

The "beta-effect"

The Coriolis parameter $f = 2\Omega sin\phi$ depends on latitude

The "beta-effect"

The Coriolis parameter f = $2\Omega \sin \phi$ depends on latitude

∴ the radius of the inertia circle R=V/f depends on latitude

The "beta-effect" gives rise to a slow westward propagation of mass

The subtropical high pressure area ("The Azores High")

The beta effect would drive the water westward

Instead we get an asymmetric Gulf Stream circulation

End