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Notes and Correspondence
Is the Coriolis effect an ‘optical illusion’?
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The difference between the derivations of the Coriolis effect on a rotating turntable and on
the rotating Earth is discussed. In the latter case a real force, the component of the earth’s
gravitational attraction, non-parallel to the local vertical, plays a central role by balancing
the centrifugal force. That a real force is involved leaves open, not only the question on
the inertial nature of the ‘inertial oscillations’, but also the way we tend to physically
conceptualize the terrestrial Coriolis effect.
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‘The Coriolis Effect isn’t a force so much as an optical
illusion, brought about because we forget that we,
too, are spinning with the ground beneath our feet.’
(Walker, 2007, p. 124).

1. Introduction

In the introduction to his ‘Theoretical Concepts in Physics’,
Malcolm S. Longair, Jacksonian Professor in natural philosophy
at University of Cambridge, discusses the development of
intuitive, physical insight. Although physical intuition on one
hand is the source of many of the greatest discoveries in
physics through ‘leaps of imagination’, it can also be a
‘dangerous tool’ because it can lead to ‘some very bad blunders’
(Longair, 1994, pp. 3 and 10). To avoid ‘blunders’, intuitive
or heuristic conceptual models of physical processes must be
in agreement with the underlying mathematics or at least not
contradict it.

In the meteorological field there are examples of misfits between
the mathematics and conceptual models (Persson, 2010). This
is particularly true with respect to the terrestrial Coriolis effect
in the atmosphere and oceans. Several textbooks, both popular
and academic, often reason along the lines that ‘relative to a
rotating frame, such as that of the Earth, a fluid element may
appear to be changing its direction of motion when relative to
an inertial frame it is not’(White, 2003, p. 695). Since Newton’s
second law does not apply in a rotating frame of reference,
the Coriolis force is then introduced as a convenience, as a
‘mental construct’ designed ‘to make it appear’ that Newton’s
second law is still valid (James, 1994, p. 8). Others see it as a
‘semantic trick’ that proves ‘useful’ for producing a ‘notationally
economical format’ of equations of motion (Stommel and Moore,
1989, p. 72).

This Note will not only question the pedagogical value
of such statements, but also their relevance for a scientific
understanding of how the deflective mechanism due to the
Earth’s rotation affects the motions of the atmosphere and
oceans.

2. The standard derivation of the Coriolis force

It is true that the standard derivation of the Coriolis effect
through a coordinate transformation seems to support the notion
that we are dealing with an ‘optical illusion’: an observer in a
fixed (f) frame of reference sees an object move over time (t)
without friction with absolute velocity (Vf ) rectilinearly with zero
acceleration if no forces are applied

dVf

dt
= 0, (1)

whereas an observer in a rotating (Ω), relative frame of reference
(r), sees the object move with relative velocity (Vr) in a curved,
outward trajectory determined by the acceleration

dVr

dt
= dVf

dt
− Ω × (Ω × R) − 2Ω × Vr (2)

where R denotes the distance from the centre of rotation (Holton,
2004, p. 33; Vallis, 2006, 2010, p. 53; Holton and Hakim, 2012,
p. 36). The terms on the right-hand side are, per unit mass, the
centrifugal force and the force named after one of its discoverers,
Gaspard Gustaf Coriolis (1794–1843).

Equation (2) quite accurately describes an object’s relative
motion without friction over a rotating turntable; an observer
on the turntable will see it move away in an ever widening
Archimedean spiral with increasing speed. However, an observer
on the rotating Earth following an object similarly moving without
friction will see something quite different: how it performs more
or less complicated ‘inertial oscillations’ within a confined space
with constant speed. This applies, e.g. to drifting oceanic buoys,
icebergs and floating debris.

Whereas the first observer, stepping off the turntable and
into the absolute frame of reference, will see the object
move rectilinearly according to Eq. (1), the second observer,
hypothetically positioned in space, will see the object follow some
curved (curtate cycloidal) trajectory on the Earth (Figure 1).
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Figure 1. The relative motion of an object moving without friction in the
midlatitudes follows a so-called ‘inertia oscillation’ (dashed line), while the
absolute motion follows a curtate cycloid trajectory (full line).

Although the motions over the turntable, with a light-hearted
simplification, can be compared with an ‘optical illusion’, this is
obviously not true for motions over the rotating Earth.

3. The equations of motion on a rotating Earth and on a
rotating turntable

For an object moving without friction over the Earth’s surface
Eq. (2) takes the form

dVr

dt
= g∗ − Ω × (Ω × R) − 2Ω × Vr, (3a)

where g* is the Earth’s gravitational attraction, Newtonian gravity
or ‘true gravity’. Similarly the path of an object moving without
friction over a rotating turntable is determined by

dVr

dt
= g − Ω × (Ω × R) − 2Ω × Vr, (3b)

where g, the (apparent) gravity, keeps the object on the platform.
It is a source of semantic, and perhaps also scientific confusion,

that in colloquial English, in contrast to, e.g. German, Dutch and
the Scandinavian languages, the word ‘gravity’ can intend both
g* and g. As the difference turns out to be fundamental, for the
discussion this difference needs to be clarified (Holton, 2004,
p. 14; Vallis, 2010, pp. 55 f; Holton and Hakim, 2012, p. 12 f). Due
to its non-spherical shape, which the Earth has acquired due to
its rotation, gravitation, or ‘true gravity’, g* is parallel to the local
vertical only at the Equator and the poles. Gravity, or ‘apparent
gravity’ (g), the resultant between the gravitational force and the
centrifugal force

g = g∗ − Ω × (Ω × R) = g∗ + �2R (4)

is everywhere parallel to the local vertical (Figure 2).
The apparent gravity has been introduced in Eq. (3b), although

it has no horizontal component, to emphasize the almost identical
mathematical structure between Eqs (3a) and (3b). In spite of
their strong similarities the equations nevertheless, as noted
above, yield quite different motions, both in a relative and an
absolute frame of reference. The deflective mechanism through
the Coriolis term −2Ω × Vr is the same for both equations, so
the difference between g and g* appear as the sole source of the
discrepancy.

Figure 2. A schematic image of the non-spherical Earth with the gravitational
vector g* (true gravity) and the centrifugal force Ce due to the Earth’s
rotation. Their resultant g (apparent gravity) is parallel to the local vertical
and perpendicular to the local horizontal (dashed lines). Although it will not
change the mathematics it is interesting to note that, due to the attraction of the
equatorial bulge, g* is not directed exactly to the centre of the Earth (except at the
Equator and the poles). Only if the total mass is concentrated in the centre of the
Earth would g* be directed to that point (Phillips, 1973, 2000, figure 1).

4. The Coriolis force on a rotating planet

The resultant of Eqs (3a) and (4) are combined into

dVr

dt
= g − 2Ω × Vr, (5)

where the second term through the cross-products implies that
the deflection is to the right and always perpendicular to the
motion and therefore can neither increase nor decrease the speed
and thus its kinetic energy. As g has (by definition) no horizontal
components, Eq. (5) will yield the familiar expression for the
acceleration of horizontal motion (H) without friction over the
Earth’ surface at latitude φ

(
dVr

dt

)
H

= f k × Vr (6)

where k is the vertical unit vector and f = 2Ω sin φ is the Coriolis
parameter (Holton, 2004, p. 13; Holton and Hakim, 2012, p. 12).
As the deflection is perpendicular to the motion it will drive it into
a curved path, which, to the extent the Coriolis force variation with
latitude can be neglected, will yield circular trajectories, ‘inertia
circles’.

5. The trajectories of ‘inertia oscillations’

More generally the trajectories satisfying Eq. (6) define so-called
‘inertia oscillations’, which have a radius of curvature, (ρ)

ρ = Vr

2Ω sin ϕ
(7)

which at midlatitudes, in a relative frame of reference, is
associated with near circular trajectories, and at low latitudes
symmetric loops around the Equator, both westward migrating
for geophysical relevant velocities (Figure 3).

The two types of inertia oscillations can easily be understood
in two ways. From Eq. (7) they can kinematically∗ be seen
as an interplay between relative velocity Vr and decreasing

∗‘Kinematics’ is the branch of mechanics where motions are considered without
forces, in contrast to ‘statics’, where forces are studied without motion, and
‘dynamics’, which includes both motion and forces. Kinematics was developed
during the 1800s as a useful tool in fluid mechanics (Persson, 1998, p. 1379 f).
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Figure 3. Trajectories relative to the rotating Earth of three objects, all starting from the same latitude, moving without friction over the rotating Earth’s surface
with different relative speeds (V1 < V2 < V3) performing inertia oscillations. For moderate speeds at higher latitudes the motion will follow approximate circular
trajectories, ‘inertia circles’. For higher speeds at lower latitudes the trajectories will be symmetric around the Equator (after Ripa, 1997a, figure 2).

curvature with approach towards lower latitudes (Paldor and
Killworth, 1988; Ripa, 1997a), dynamically as an interplay between
angular momentum conservation and conservation of energy, as
a ‘contest’ between the equatorward centrifugal force and the
poleward attraction of gravitation (Brooks, 1948; Feussner, 1969;
Paldor and Killworth, 1988; Ripa, 1997a; Phillips, 2000).

Paldor and Killworth (1988) derived an expression for the
initial latitude ϕ0 poleward from which an eastward velocity u0

will follow an ‘inertia circle’ trajectory and not a symmetrical
‘loop’ around the Equator.

cos ϕ0 < 1 − 2u0

2�R
(8)

For velocities of 10 m s−1 this yields latitude 12◦, which
approximately encloses the equatorial Tropics with its particular
dynamics. For velocities of 50 m s−1 it yields a latitude of almost
27◦, just equatorward of the average position of the subtropical
jet stream. See Paldo and Killworth, 1988 for full discussion and
more complex scenarios.

The absolute motion of objects taking part in these oscillations,
seen by the hypothetical observer outside the Earth, will obviously
not follow straight lines – nor will the objects have constant
absolute speed. This can be shown in a fairly simple way.

6. The velocities in the fixed reference frame

A body moving without friction over the Earth’s surface will
conserve its axial absolute angular momentum because there is
no torque around the Earth’s rotational axis Ω (Phillips, 2000;
Holton, 2004, p. 19; Vallis, 2010, p. 143; Holton and Hakim, 2012,
p. 17 f). Specifically, if the oscillation is of the midlatitude ‘inertia
circle’ type, confined between a southerly ϕS and a northerly
ϕN latitude, the constant relative velocity Vr is, in the extreme
latitudinal positions, directed in straight east or west directions
with a relative difference of 2Vr

By calculating the body’s absolute velocity eastwards we will
find a mathematically beautiful relationship with the two limiting
latitudes ϕS and ϕN. With RN and RS for the distances to the
Earth’s rotational axis we have with conservation of absolute
angular momentum, M

M = (ΩRN + Vr)RN = (ΩRS − Vr)RS (9a)

and for UN = ΩRN and US = ΩRS for the eastward velocities of
points fixed on the Earth’s surface at these latitudes

(UN + Vr)
UN

Ω
= (US − Vr)

US

Ω
(9b)

which yields the simple relation

Vr = (US − UN) (9c)

The two latitudes, ϕS and ϕN, between which the inertia
oscillation is confined, differ in their absolute (eastward) speed
by a quantity that is identical to the relative speed Vr.

The object’s absolute eastward velocities in its most
poleward (10a) and equatorward (10b) positions can also be
written

UN + Vr = US (10a)

US − Vr = UN (10b)

which implies that the absolute eastward velocity of the object in
one latitudinal extreme position will equal the absolute velocity of
the latitude in the opposite extreme (Figure 4).

This relation, which to the best of my knowledge, has not been
noted before, is a generalization of what Durran (1993, p. 2181)
found while studying inertia circle motion close to the North Pole:
the same (= zero) absolute velocity both at the poleward extreme
(the Pole itself) and at the most equatorward point of the inertia
oscillation trajectory. In a paper on inertial motion over the Earth’s
surface Feussner (1969, p. 263) has provided computational
evidence for the relation expressed in Eqs (10a) and (10b).

Therefore, the moving object is changing its velocity in the
absolute frame of reference, a real force must be acting. For such
a force only the gravitational attraction g* can be considered.
However, Eq. (6), which describes the motion exactly, does math-
ematically contain neither the gravitational attraction g* nor the
centrifugal force −Ω × (Ω × R). This does not mean that these
forces have vanished physically but that they are not necessary
for a kinematic description of the motion according to Eq. (6).

Figure 4. The absolute eastward velocity of an object performing an ‘inertia
circle’ type oscillation between two latitude bands, ϕN and ϕS, where fixed points
move eastward with absolute speeds UN and US. The oscillating object’s absolute
eastward velocity varies between a maximum (= US) in its poleward extreme, ϕN,
and minimum (= UN) in its equatorward extreme, ϕS.
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Just because the Coriolis deflection can be described
kinematically does not mean that the deflection process itself is just
a matter of kinematics. To understand the physical mechanism
we apply a dynamical approach involving the interplay between
the dominating forces, Newtonian gravitation and the centrifugal
force (Durran, 1993; Ripa, 1997a; Persson, 1998; Phillips, 2000).

7. The physical mechanism responsible for the inertial
oscillation

For an object at relative rest on the Earth (Vr = 0), the
gravitational component perpendicular to the rotational axis g*N,
balances the centrifugal force exactly (Figure 5(a)). As is discussed
in many textbooks (e.g. Holton, 2004, p. 16 f; Holton and Hakim,
2012, p. 15)† an eastward relative motion will make the outward
directed centrifugal force stronger than g*N and disrupt the
balance, making (apparent) gravity g no longer directed along
the local vertical, but slightly outward (Figure 5(b)). This yields
an outward acceleration that, through a simple mathematical
analysis, turns out to be−2Ω × Vr and accounts for the horizontal
Coriolis and vertical ‘Eötvös effects’. The latter, named after the
Hungarian scientist Roland von Eötvös (1848–1919), changes the
weight of latitudinal moving objects (Persson, 2005).

For westward relative motion the textbooks tend to become
rather vague (see e.g. Holton, 2004, p. 16 ff; Holton and Hakim,
2012, p. 16). They could easily just have mirrored the previous
reasoning: the westward relative motion will make the outward
directed centrifugal force weaker than g*N and disrupt the balance,
making (apparent) gravity g no longer directed along the local
vertical, but slightly inward. This yields an inward acceleration
that through a simple mathematical analysis turns out to be
−2Ω × Vr and accounts for the Coriolis and Eötvös effects (see
Figure 5(c)):

The textbook authors would then have made an interpretation
that challenged the conventional view that the Coriolis effect is
a purely inertial process and that no real forces play any role.
The reason is that the centrifugal force will only be weakened by
2Ω × Vr, but still be directed outward and equatorward, not inward
and poleward. The only available physical force that can move
anything inwards, towards the poles, is therefore the poleward
component of gravitation (true gravity) g*N. This was also the
conclusion that Durran (1993) reached.

8. The affinity between the Coriolis and centrifugal forces

Another reason for the textbooks’ vagueness might be a
conception that the Coriolis force is intrinsically different from
the centrifugal force just because it is represented by a separate
mathematical expression. This can be remedied mathematically
by a simple reformulation of Eq. (3a).

dVr

dt
= g∗ − Ω × (Ω × R + 2Vr) (11)

where the second term can be regarded as the ‘total’ centrifugal
force through the combined effect of the Earth’s rotational velocity
and the object’s relative velocity.

The view that the ‘Coriolis force’ is not physically different
from the centrifugal force is in line with how Coriolis envisaged
‘his’ force as an extension or modification to the centrifugal force
for motions relative to the rotation (Persson, 1998).

One reason why the physical affinity between the Coriolis and
the centrifugal forces has not been evident might be due to the
way we conduct the mathematical derivations. Although we use
the centrifugal effect for the deflection of zonal motion, the most
convenient derivation for the deflection of meridional motion is

†In an new sentence, inserted in Holton and Hakim (2012, p. 15), it is said that
in this case ‘axial angular momentum is not conserved’. This is not correct and
contradicts what is said elsewhere, e.g. on pp. 17 f, 73 and 77.

Figure 5. (a) The balances of forces for an object at rest on the surface of a
rotating planet. Due to the non-spheroid shape of the planet, only the resultant of
the gravitational force and the centrifugal force , the (apparent) gravity vector g, is
pointing parallel to the local vertical, not so the gravitational attraction g∗, except
at the poles and the equator. The gravitational component g*N perpendicular
to the rotational axis balances exactly the centrifugal force Ce. (b) An eastward
relative motion (into the page) makes the outward-directed centrifugal force
stronger than g*N and disrupts the balance in (a). This makes g non-parallel
to the local vertical, directed away from the rotational axis. The outward ‘extra’
centrifugal acceleration (black arrow), perpendicular to the Earth’s rotational
axis, can be decomposed into one component parallel to the local horizontal,
the ‘Coriolis effect’, and one parallel to the local vertical, the ‘Eötvös effect’, in
this case making eastward-moving objects lighter. (c) A westward relative motion
(out from the page) makes the centrifugal force weaker than g*N and disrupts
the balance in (a), which makes g non-parallel to the local vertical. The inward
acceleration, physically caused by g*N perpendicular to the Earth’s rotational axis,
can be decomposed into one component, parallel to the local horizontal, the
‘Coriolis effect’, and one parallel to the local vertical, the ‘Eötvös effect’, in this
case making westward-moving objects heavier.

through angular momentum conservation (Holton, 2004, p. 14 f;
Holton and Hakim, 2012, p. 14 f). This might give the impression
(as it once did to William Ferrel!) that we are dealing with two
different mechanisms that coincidently yield the same result.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 1957–1967 (2015)
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Phillips (2000, p. 303) suggests a way to remove any ambiguity. A
complementary approach is to find a way to derive the Coriolis
force also for meridional motion using the centrifugal effect (see
Appendix).

9. The Coriolis effect on a rotating parabola

We have seen that motion without friction on the rotating Earth
differs fundamentally from the motion over a rotating turntable.
However, by deforming the turntable into a rotating parabola any
motion over its surface will become almost identical to motions
over the rotating Earth. This is a common way to demonstrate
the Coriolis effect at universities and high schools with a camera
rotating with the system. (Klebba and Stommel, 1951; Stommel
and Moore, 1989; Durran, 1993; Durran and Domonkos, 1996;
Hoskins, 2009).

On a rotating parabolic surface gravity is non-parallel to the
local vertical but its resultant with the centrifugal force yields
a force parallel to the local vertical (Figure 6). An object at
rest relative to the parabola will to an outside observer move
around in a circle with a period τ = 2π/Ω . If the object is given
an impetus, it will to the outside observer move around in an
approximately elliptic path and relative to an observer inside the
parabola, perform inertia oscillations with a period τ = π/Ω ,
just as on the Earth’s surface (Figure 7).

The parabola must be as ‘flat’ as possible to minimize the
effect of the vertical accelerations connected to the object’s radial
motions. These vertical accelerations will cause its trajectory to

Figure 6. On a rotating parabola the resultant of the centrifugal force (Ce) and
apparent gravity (g) is parallel to the local vertical and balances the reaction force
(N). An object positioned anywhere on the inner surface will therefore remain
at rest. If it is perturbed it will, for an observer inside the parabola, perform
oscillatory motions.

Figure 7. Idealized motion of a body on a counter-clockwise rotating parabolic
disc as seen by an outside observer (the left part). The dashed arrow shows the
absolute trajectory of the object at relative rest at A on the parabola; the solid line
arrow shows the absolute trajectory of the object when it has been perturbed. It
then moves in an ellipse from E, over B, C, D and back to E. To the right the same
as seen by an observer on the disc. During the time it takes the body to make a
full revolution in the fixed frame of reference it makes two clockwise revolutions,
EBC and CDE, in the relative. (After Sverdrup et al., 1942, p. 435; Sverdrup, 1955,
pp. 100–104.)

gradually drift away in a series of retrogressive loops (Stommel
and Moore, 1989, pp. 100, 105) as can be seen in the experiment
by Hoskins (2009). The moving object should preferably be
something like Durran’s and Domonkos’s sliding cylinder rather
than a rolling ball, due to the complications arising from the ball’s
own angular momentum conservation.

10. The role of friction in the Coriolis effect

In their experiment Durran and Domonkos (1996) realized that
if there is no frictional coupling between the object and the
underlying parabolic surface, it would not matter whether or not
the parabolic dish was rotating. They could therefore conceivably
economize by driving only the unit containing the rotating-frame
camera.

The object was launched along the non-rotating parabola’s wall
with a tangential speed identical to the previous rotation. An
outside, stationary observer would still see the object go around
in a circular path, an analogue to some amusement park motor
cycle races courses (Stommel and Moore, 1989, p. 97). From
the moving camera perspective it would, however, be seen resting
motionless. By perturbing the motion, e.g. by launching the object
with a slightly different speed, it will to the outside observer appear
again as moving in an approximately elliptic path, to the rotating
camera it would appear to perform inertia oscillations, identical
to the ones in Figure 7.

The Durran and Domonkos (1996) experiment thus shows
that it is not through friction that the object ‘knows’ it is in a
rotating system, but through the shape of the underlying surface
defined by the strength and direction of the reaction force N in
Figure 6 (Phillips, 2014).

Removing the need to have an underlying rotating surface
leads us into celestial mechanics where we find Coriolis effects in
unexpected circumstances. Butikov (2001) shows mathematically
how an astronaut in an orbiting satellite should dispose of an
unwelcome space alien so that the Coriolis force does not return
him to the satellite. Greenberg and Davis (1978) show how
Coriolis forces resulting from the interacting of one centrifugal
force and two gravitational attractions make hundreds of asteroids
cluster in Jupiter’s ‘Greek’ and ‘Trojan’ Lagrange points L4 and L5.

11. The role of rotation in the Coriolis effect

Durran and Domonkos (1996) did not discuss whether their
result had any relevance for the Earth. We can make the thought
experiment that the Earth were to stop rotating, while keeping
its non-spherical oblate ellipsoid form. We then launch an object
without friction ‘eastward’ along a certain (previous) latitude,
with the same speed as the (once moving) latitude. For a
hypothetical observer in space, travelling with the object, it would
appear to be at rest. If the object’s velocity was perturbed by Vr

a hypothetical observer in space, travelling with the body, would
see it perform inertia oscillations just as a stationary observer on
the Earth when the earth is rotating.
Figure 8(a) depicts schematically the absolute and relative motions
for an object released with a relative meridional northward
velocity of 10 m s−1 at the latitude of Oxford, 51.75◦ where the
Earth’s rotation eastward is 288 m s−1. The object’s absolute
motion will oscillate between 283 and 293 m s−1 and, seen by a
hypothetical observer fixed in space, and in line with Figures 1 and
4, be a curtate cycloid trajectory confined between two latitudes,
in this case between 51◦ and 52.5◦. A local observer in Oxford
would see the object perform an ‘inertia circle’ oscillation with a
radius of curvature around 8 km (small arrows).

In Figure 8(b) the earth is no longer rotating but maintains
its non-spherical form. An object is launched ‘eastwards’ at
288 m s−1, the same speed as the once moving Earth at that
latitude, plus an initial meridional component of 10 m s−1. An
observer fixed in space, or in Oxford, sees the same absolute
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Figure 8. Absolute and relative motion without friction of an object performing inertia oscillations in the midlatitudes (in this case at the latitude of Oxford 51.75◦)
over a rotating and non-rotating ellipsoid shaped Earth (see text for details). (a) Rotating Earth seen from an outside, fixed position, (b) and (c) Non-rotating, but
still ellipsoid, Earth seen from an outside, fixed position and ‘eastward’ moving, perspective.

Figure 9. Schematic images of the formation of Taylor–Proudman columns in
a rotating water tank. (a) Ink inserted into the water of a non-rotating tank will
spread over the whole water volume and colour it uniformly. (b) The tank has
been brought into rotation and the (new fresh) water has settled in a way that
makes it rotate with the tank as a solid unity. When the ink is dropped into
the water (in the same relative position following the rotation) it will sink and
not disperse, instead forming vertical coloured columns. The upper surface has
through the rotation formed a parabolic surface that provides an inward directed
horizontal pressure-gradient force, which balances the inward directed centrifugal
force.

trajectory as in the ‘normal’ case, oscillating between 293 m s−1

at latitude 52.5◦ and 283 m s−1 at 51◦.
In the right-hand image (Figure 8(c)) nothing has changed

for the local stationary Oxford observer, but the hypothetical
space observer is now following the object ‘eastwards’ around
the non-rotating Earth. Beneath him he can see Oxford moving
in the opposite ‘westward’ direction at the same speed. The
launched object, however, will appear to him perform ‘inertia
circle’ oscillations with a radius of about 87 km.

This thought experiment, inspired by Durran and Domenkos’s
(1996), is an other way to illustrate that there does not have
to be an underlying, rotating surface to make Coriolis effects
possible. A more controversial interpretation, that the deflecting
force is primarily not caused by the rotation, but by the Earth’s
non-spherical figure and would be just as effective on a non-
rotating but still non-spherical earth, was made by the German
geophysicist Karl Feussner at a conference in Berlin in 1968
(Feussner, 1969). That the rotation of the surface is secondary
and all that is needed is a parabolic form, was also emphasised
by the Mexican oceanographer Pedro Ripa in his book on the
Coriolis force (Ripa, 1997b, Chapter VIII).

Durran and Domenkos (1996) never drew these conclusions
but they were perhaps implicit when they questioned if their
commercially easily available parabolic disc was the most natural
equipment for their experiments? However, as will be seen below,
in their further discussion they pointed out the decisive role of
rotation in creating the non-spherical form.

12. The common denominator – the balancing of the
centrifugal force

Durran and Domonkos’s experiments were made in collaboration
with Professor Emeritus Norman A. Phillips. In the 1950s, then at
the Massachusetts Institute of Technology, Phillips had created a
parabolic surface by rotating a disc of slightly liquid cement until
the cement hardened after a night’s running. It was then polished
to provide a very smooth surface.

Durran and Domonkos (1996) commented that from a
pedagogical viewpoint, it would have been nice to follow
Phillips’s original strategy because his construction provides an
experimental confirmation that the free surface of a rotating fluid
must deform into a parabolic surface in order to be in equilibrium
between true gravity and the centrifugal force. In the same way
the rotation of the Earth deforms it into a non-spherical shape.

This kind of cancellation of the centrifugal force by a ‘natural’
creation of an inward component of a real force occurs not
only with the rotating parabola or the rotating Earth but also
in G.I. Taylor’s famous water-tank experiments (Figure 9). The
rotation creates in the fluid an upper parabolic surface where
an inward pressure-gradient force balances the outward-directed
centrifugal force (Batchelor, 1967, pp. 557–559, Batchelor, 1994;
Taylor, 1974).

The unbalanced part of the centrifugal force, the Coriolis force,
will make any ink particle with a horizontal velocity component,
i.e. a component perpendicular to the rotational axis, return in
a small inertia circle. With one revolution in 2 s any ink particle
‘trying to escape’ horizontally with a velocity of 6 mm s−1 will
be brought back in an inertia circle motion confined within a
diameter of 4 mm. (With this information it is left to the reader
to figure out why a pingpong ball, released from the bottom of
a water-filled tank, will rise more slowly through the water if the
tank is rotating.)

G. I. Taylor’s famous experiment shows, thanks to the colouring
of the water, how the mechanical properties of a liquid or gas
change due to the rotation, how the rotation makes them
‘elastic’, ‘rigid’, ‘stiff’ or ‘obstructive’ (Prandtl, 1952, p. 355;
Baker, 1966, Batchelor, 1967, pp. 556–557; Cushman-Roisin,
1994, pp. 4, 131; Persson, 2001; Vallis, 2010, p. 88). In the same
way the mechanical properties of the atmosphere and oceans will
change due to the Earth’s rotation, or as formulated by Vallis,
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2010, p. 57): ‘If the solid Earth did not bulge at the equator, the
behaviour of the atmosphere and oceans would differ significantly
from that of the present system’. This is something that is not easily
conceptualized from the ‘illusory’ Coriolis effects demonstrated
on a turntable

13. Three misinterpretations of the Coriolis effect

There are several pedagogical ways to approach the Coriolis
effect that give rise to misleading notions: (i) that it can be fully
understood through the turntable analogy; (ii) that the shape of
the Earth has no relevance for the terrestrial Coriolis effect; (iii)
that it, when all comes about, is just ‘illusory’.

13.1. Misleading justifications for the turntable model

Although Holton (2004, p. 14 f), Durran and Domonkos (1996,
p. 557) and others have pointed out that the standard derivation of
the Coriolis effect, physically applicable on a turntable, potentially
can be misleading for geophysical interpretations, it is still a
common approach.

13.1.1. The f-plane approximation

Durran (1993, p. 2183) suggests that one source of the confusion
is to interpret the f -plane physically, as if it indeed were a
real turntable. On an f -plane the motions are prescribed to
be determined only by a constant Coriolis term 2Ω × Vr,
with any centrifugal force intentionally ignored. This f-plane
approximation is, however, a good physical approximation only
very close to the centre of rotation of a real turntable. For a
body moving with 1 m s−1 on a turntable with one revolution in
2 s (and thus Ω = π), the centrifugal force is smaller than the
Coriolis force only 0.2 m from the centre of rotation.

13.1.2. The ‘Hadley Principle’

Applying the turntable logic directly to the rotating Earth is the
basis for ‘Hadley’s Principle’ from 1735 (Persson, 2009). This
intuitively appealing, but totally erroneous, explanation has not
only deceived generations of students but also some great minds
such as Arnold Sommerfeldt and Max Born. The distinguished
oceanographer Adrian Gill strongly promoted Hadley’s reasoning
in his textbook and claimed that it was inspired by conservation
of angular momentum (Gill, 1982, pp. 23, 189, 369, 506 and 549).
Hadley assumed conservation of absolute velocity and could not
possible have thought in terms of angular momentum, because it
was only later in the 1700s that physicists realized that Kepler’s
second Law (= conservation of angular momentum) could also
be used in terrestrial mechanics.

13.1.3. The ‘simplified’ derivation

A simple and mathematically impeccable, but physically
misleading, derivation of the 2ΩVr term was presented in the
1840s by the French mathematician Joseph Bertrand (Persson,
2005). It has since then gained widespread popularity, even in
some academic textbooks, as a complement to the rigorous vector
derivation. It makes use of two erroneous assumptions: Hadley’s
idea about conservation of absolute velocity for motions over
the Earth and that the deflection on a flat turntable is solely
due to the Coriolis force. The first assumption overestimates the
Coriolis effect, the second underestimates it, and because these
errors cancel the derivation yields the ‘right’ result (Figure 10):

However, conservation of absolute velocity is a justified
condition on a flat turntable, but not on a rotating planet, whereas
the condition that the Coriolis force is solely responsible for
the deflection is justified on a rotating planet, but not on a
turntable. Bertrand’s ‘simplified’ derivation is interesting from a
philosophical point because it shows that it is possible to obtain

Figure 10. The deceptive ‘simplified’ derivation of the Coriolis force: an object is
moving outward in a rotating system with relative velocity V . During 	t it covers
the distance	R = V · 	t during which time the system rotates anticlockwise by an
angle Ω · 	t and causes a clockwise deflection by 	S = Ω · 	t · V · 	t, which
according to the relation 	S = a · (	t)2/2 yields the acceleration a = 2Ω · V .

Figure 11. The mathematical model for numerical modelling: the Earth is
considered a perfect rotating sphere with no centrifugal force and therefore
‘apparent gravity’ g will be identical to only ‘true gravity’ g*, which for a spherical
planet will point straight toward the centre with no horizontal components. Any
relative motion Vr on the Earth’s surface is assumed to be affected horizontally
only by the Coriolis term −2Ω × Vr.

correct results from erroneous assumptions even if the mathematical
treatment is correct.

13.2. Poor interpretation of the equations of motion

A correct mathematical derivation is a necessary but not sufficient
condition to obtain a qualitative ‘feel’ for the physical processes
or mechanisms involved in the Coriolis effect.
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13.2.1. The spherical Earth approximation

The spherical Earth model is a useful mathematical model, for
example in numerical weather prediction, but it is nevertheless
unphysical (Gerkema et al., 2008). Leaving aside the fact we do
not know any rotating planet that is spherical, any motion without
friction over such a spherical planet would physically be great
circles in an inertial frame of reference and yield more complex
loops in the non-inertial (McIntyre, 2000; Earley, 2013).

The main reason for this approximation is therefore not,
as is often said, that the Earth is ‘almost a sphere’, but that
we can represent the physical real non-spherical Earth with
an unphysical mathematical model where the motions will be
the same. To achieve this, however, we must also make other
unphysical simplifications, such as ignoring the centrifugal effect
of the rotation that makes the gravitational attraction everywhere
parallel to the local vertical (Figure 11). Although it physically
should be uniform on a spherical Earth it can, as James (1994, p. 9)
points out, for modelling purposes, unphysically, be prescribed
as a function of latitude. There is an excellent exposure in Vallis
(2010, pp. 55–57) on these questions.

13.2.2. The ‘metric terms’

So-called ‘metric terms’ u2/R and uv/R appear when we derive the
deflection of a (west–east) latitudinal motion using the centrifugal
force approach and deflection of a meridional (north–south)
motion using conservation of angular momentum. These terms
are rightly neglected, but often for the wrong reason. It is true
that they are small for ‘synoptic-scale motions’ or when the
speed � ΩR, the rotation of the Earth (Holton, 2004, p. 16 f;
Gerkema et al., 2008; Holton and Hakim, 2012, p. 15f)‡. The
main argument, however, is physical: the ‘metric terms’ result
from a constrained motion, prescribed to be along latitudes and
longitudes respectively. Even on a non-rotating Earth a train
between Reading and London would, equally in both directions,
physically experience a southward acceleration against the rails,
although much weaker than the Coriolis force (for the rotating
case). The motion of the atmosphere and oceans. however, is not
constrained in this way. This makes these ‘metric terms’ physically
irrelevant, or else Eq. (5) would be an approximation. For their
roles in the ‘primitive equations’ see Vallis (2010, p. 61).

13.2.3. The rotational period of the Earth

In determining the value of the Coriolis parameter −2ΩVr sin ϕ

the rotational period Ω should be calculated on the sidereal day
of 23 h and 56 min, which corresponds to the Earth’s rotation
versus the fixed stars. There seems, however, to be a general
unawareness that using the sidereal day is the same as taking into
account the small Coriolis contribution from the orbiting around
the Sun. Some textbooks (e.g. Godske et al., 1957, p. 233) even
deny that this is the case. Experiments run at the European Centre
for Medium-range Weather Forecasts showed clear differences
after about 5 days.

Consequently, considering the rotation rate of one of Jupiter’s
and Saturn’s gaseous moons against the fixed stars will implicitly
take into account the Coriolis effect due to (i) the moon’s rotation
around its own axis, (ii) its rotation around the mother planet
and (iii) the moon’s rotation around the Sun. The rotation of the
solar system around the galaxy can, however, be neglected!

‡With these scale arguments Holton (2004) and Holton and Hakim (2012)
contradict themselves on the following pages, when they calculate the deflection
of a rapidly eastward moving ballistic missile and (correctly) do not take into
account any ‘metric terms’, which would in such a case have more than doubled
the deflection.

13.3. Misrepresentation of mechanical definitions related to the
Coriolis effect

Misinterpretations also occur when stringent definitions in classic
mechanics are interpreted colloquially.

13.3.1. Definition of ‘work’

Statements that the Coriolis force is a ‘fictitious’ or ‘apparent’
force that ‘cannot do work’ does not mean that it is ‘doing
nothing’. The stringent mechanical definition of ‘work’ is the
scalar product between a force and the displacement of the
body it is acting on, which is associated with a conversion
between potential and kinetic energy. ‘The Coriolis force is doing
no work’ means simply that it, always perpendicular to the
motion, can never contribute to any conversion between kinetic
and potential energy. For ‘negative work’ see (Persson, 1998,
pp. 1379, 1382 ff).

13.3.2. Are ‘inertia oscillations’ really inertial?

Durran (1993) questioned the use of words such as ‘inertia’,
‘inertial motion’ and ‘inertial oscillation’ because a real force,
gravitation, is involved. This has caused some controversy (Ripa,
1997a; Early, 2012, among others). An argument in support
of Durran is the common (mis)conceptions surrounding the
Foucault pendulum. Its oscillation is often explained as a motion
without friction under inertia, with the plane of the swing steadily
pointing to a specific fixed star, while the Earth is rotating under
it. Generations of students have struggled to accommodate
this ‘easily understood’ explanation, which suggests a uniform
period (of one sidereal day) everywhere on the globe, while the
mathematics (and observations!) yield a period of the sidereal
day divided by sine of the latitude. As shown by Phillips (2001,
2004) the Foucault pendulum motion is not inertial because it is
highly affected by the Earth’s gravitational force, which makes
the plane of swing slowly precess versus the fixed stars, except at
the poles.

14. From Charles Delaunay 1859 to Dale Durran 1993

In retrospect, Durran would have preferred the title ‘Is the Coriolis
Force Alone Really Responsible for the Inertia Oscillation?’ (D.
Durran and N. Phillips, 2000; personal communication). It
would perhaps have expressed more strongly his concern that
the 2Ω × Vr term was a kinematic description only of how the
oscillation performed, not why. To accomplish this he made a
dynamic analysis which gave the result that the gravitational
attraction, a very real force, was highly instrumental in the
‘inertial’ oscillation.

Durran’s analysis, reproduced and extended here, might appear
new and controversial, but more or less identical discussions have
been conducted over the past 150 years, the first being in 1859 by
the astronomer Charles Eugène Delaunay (1816–1872) during
a session in the French Academy (Persson, 2005). In 1933,
halfway between Delaunay and Durran, we find in Physikalische
Hydrodynamik, a standard work by the pillars of the legendary
Bergen School, a long and thorough mathematical and physical
analysis of the effects of the Earth’s rotation on an object moving
without friction (Bjerknes et al., 1933, pp. 453–473): on page
459 Durran’s discussion of an object conducting an ‘inertial
oscillation’ is more or less replicated.

15. Discussion

Although today there is a broad understanding of the basics of
the relativity theory and quantum mechanics, why is the Coriolis
effect still a mystery? Symptomatically Richard Feynman, who
eloquently managed to explain almost everything in physics but
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expressly stayed away from meteorology, regarded the analysis
of rotating fluids as unsolvable (Feynman et al., 1977, pp. 3–7
to 3–9) and failed to explain the Coriolis effect (Feynman et al.,
1977, p. 19-8; Tiersten and Soodak, 1998).

The author has elsewhere (Persson, 2010) suggested three
factors that complicate attempts to conceptualize the Coriolis
effect: its counterintuitive nature, the formalistic way it is taught
and an unawareness of the distinction between mathematics
and physics.

1. Many processes in classic mechanics, of which dynamic
meteorology is a branch, are quite counterintuitive. Most
of us are since childhood familiar with the Coriolis
effect on a carousel, but only scientists in boundary-layer
meteorology, oceanography and fluid dynamics have direct
experience of how it manifests itself in the form of ‘inertial
oscillations’ (Thorpe and Guymer, 1977; van de Wiel et al.,
2012). This might be the reason why textbooks in these
subjects often provide better interpretations of the Coriolis
effect than other meteorological textbooks.

2. A popular criticism of dynamic meteorology education is
that it is ‘too mathematical’. Someone who might have
agreed, although not for the popular reasons, was the late
Pierre Gilles de Gennes (1932–2007) the 1991 Nobel Prize
Laureate in Physics. In an educational debate in France
he held that mathematics is the easiest part of physics (de
Gennes and Badoz, 1996). The difficulty, according to de
Gennes, lies in the interpretation of the mathematics, how
it relates to observations and how it connects with other
theories. The Coriolis effect is a striking example of his
thesis: the correct mathematical derivation was first made
by Laplace and Gauss more than 200 years ago – and we
are still debating what it physically means.

3. Making a distinction between mathematics and physics
enables us to understand, and make use of, the ability
of mathematics to describe a certain physical process by
different formalisms. As pointed out by Gerkema et al.
(2008), it is, however, always important to find out to
what extent mathematical simplifications or conditions
are physically valid. The spherical Earth model (section
13.2.1) yields accurate descriptions (and forecasts!) of the
atmospheric flow, but is not appropriate as a basis for a
physical understanding.

These three factors are represented in George Hadley’s popular
but highly misleading ‘Principle’: (i) air parcels can never move
in the intuitively appealing way Hadley suggested (see section
13.1.2), but rather along quite counterintuitive trajectories; (ii)
a mathematical derivation, partly based on Hadley’s erroneous
model, can still yield the ‘right’ solution (see section 13.1.3);
(iii) when Hadley’s erroneous condition of conservation of
the absolute velocity is replaced by the correct condition of
conservation of angular momentum this yields even more
excessive winds, because the change is done with wrongly specified
physical conditions (paper under preparation).

16. Summary

Although relative motion Vr without friction, both over a
turntable and a rotating planet, involves a deflecting mechanism,
expressed by the term −2Ω × Vr, the two scenarios differ
fundamentally physically. This is because of the presence of
an unbalanced centrifugal effect in the former scenario but not in
the latter.

A proper intuitive understanding of the deflection over a
rotating planet, on a rotating parabola or in a rotating water
tank, might require more mental effort than a scant reference
to the ‘illusory’ deflection over a turntable, but the effort is
rewarded because it makes it intuitively easier to understand the

fundamental physical effects that the rotation has on gaseous or
liquid substances, making them ‘rigid’ or ‘stiff’, resisting external
forces.

The general circulation of the atmosphere, with its jet streams,
Rossby waves and vortices, will with this interpretation appear
as manifestations of an eternal ‘combat’ between two opposing
forces: the pressure-gradient force trying to equalize horizontal
contrasts, and the Coriolis force trying to restore them.
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Appendix

A.1. Derivation of the Coriolis force from a centrifugal
perspective

To clarify that the Coriolis force and the centrifugal force are
not two intrinsically different types of forces, the former is
here derived entirely from a centrifugal, or rather centripetal
perspective. It is based on an idea by Jones and Wallingford
(1969), who seem to have been inspired by a similar approach in
Newton’s ‘Principia’. The derivation is carried out in an absolute
frame of references, thus avoiding the problem of accommodating
both absolute motion (the path of the moving object) and relative
accelerations (e.g. the centrifugal acceleration) in the same image.

Note that the Coriolis acceleration +2ΩVr is not the ‘fictitious’
Coriolis force for unit mass, but an acceleration due to a real force
and is directed to the left for counter-clockwise rotation (like
the Northern Hemisphere). On a moving body it counters the
Coriolis force, keeping a body in a straight relative motion (see
Vallis, 2010, p. 53 and footnote 1, p. 115).

A.1.1. Derivation of the centripetal acceleration

Jones and Wallingford (1969) considered an object that under
inertia should have moved rectilinearly from A to B. Fixed in
a rotating system the body is brought, during time 	t, by an
inward centripetal acceleration, a, into a circular trajectory to
C with a deflection 	S (Figure A1(a)). Using the Pythagorean
theorem

(R + 	S)2 = R2 + (Ω · R · 	t)2, (A1)

(a) (b)

Figure A1. (a) The derivation of the centripetal acceleration for a body fixed in
the rotating system. (b) The derivation of the centripetal and Coriolis accelerations
for a body moving tangentially relative to the rotating system. See text for further
details.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 1957–1967 (2015)



1966 A. Persson

which, ignoring non-temporal quadratic terms, yields

2	S = Ω2 · R · (	t)2, (A2)

and with the familiar relation 2	S = a · 	2t yields the equation
a = R · Ω2 for the centripetal acceleration.

A.1.2. Derivation of the Coriolis acceleration for tangential relative
motion

An object in the same anticlockwise rotating system as above
has a tangential component (u) relative to the rotation. Instead
of moving from A rectilinearly over B towards D the object
is brought, during time 	t, due to an inward centripetal
acceleration, a, into a circular trajectory to E with a deflection
	S1 (Figure A1(b)).

Again applying the Pythagorean theorem

(R + 	S1)2 = [(u + R · Ω) · 	t]2 + R2, (A3)

and with the same arguments as above we have

2	S1 = Ω2 · R · (	t)2 + 2Ω · u · (	t)2 + u2 · (	t)2/R, (A4)

which, again using 2	S = a · 	2t, yields three acceleration
terms: Ω2 · R (the centripetal acceleration), 2Ω · u (the Coriolis
acceleration) and u2/R (the ‘metric’ term), as discussed above in
section 13.2.2.

A.1.3. Deriving the Coriolis acceleration for radial motion

An object in the same anticlockwise rotating system has a radial
component (v) relative to the rotation. Instead of moving from A
rectilinearly towards B the object is brought, during time 	t, into
a curved trajectory to G with a deflection 	S2 (Figure A2(b)).
The deflection from B to C is due to the above-mentioned
centripetal acceleration Ω2 · R, the deflection from C to G by
a combination of the radial translation (v · 	t = 	R) and a
tangential acceleration, a, which over time 	t carries the object
over distance 	S2 (Figure A2(b))

Had the object been stationary in the rotating system it would,
as stated above, have reached C after covering the distance
R · Ω · 	t. Because the tangential acceleration is directed against
the rotation, the object will, when it reaches G, only have covered
the distance (R − 	R) · Ω · 	t.

For Ω · 	t � 1 the difference between the distances
	S2 ≈ 	R · Ω · 	t = v · Ω · (	t)2, which through 2	S = a ·
	2t yields the tangential acceleration a = 2Ω · v, the Coriolis
acceleration. The metric term uv/R that results from the derivation
using angular momentum (Holton, 2004, p. 16; Holton and
Hakim, 2012, p. 15) is absent here because u = 0 for meridional

(a) (b)

Figure A2. The derivation of the Coriolis acceleration for a radially inward
moving object. (a) Highlights the outline of the motion and (b) provides additional
mathematical details. See text for further details of the derivation.

v motion. It may be conjectured that any correct derivation
of the Coriolis force, mathematically or geometrically, must
be made in conjunction with the derivation of the centrifugal
force.
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