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chapter  10

Dynamics

10 We use winds to power our wind 
turbines, push our sailboats, cool our 
houses, and dry our laundry on the 

clothesline.  But winds can also be destructive — in 
hurricanes, thunderstorms, or mountain downslope 
windstorms.   We design our bridges and skyscrap-
ers to withstand wind gusts.  Airplane flights are 
planned to compensate for headwinds and cross-
winds.
 Winds are driven by forces acting on air.  But 
these forces can be altered by heat and moisture car-
ried by the air, resulting in a complex interplay we 
call weather.  The relationship between forces and 
winds is called atmospheric dynamics.  Newto-
nian physics describes atmospheric dynamics well.
 Pressure, drag, and advection are atmospheric 
forces that act in the horizontal.  Other forces, called 
apparent forces, are caused by the Earth’s rotation 
(Coriolis force) and by turning of the wind around a 
curve (centrifugal and centripetal forces).  
 These different forces are present in different 
amounts at different places and times, causing large 
variability in the winds.  For example, Fig. 10.1 shows 
changing wind speed and direction around a low-
pressure center.  In this chapter we explore forces, 
winds, and the dynamics that link them.
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Figure 10.1
Sketch of sea-level pressure (thin lines are isobars) & the result-
ing near-surface winds (arrows).  “L” is low pressure center.
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WinDs anD Weather maps

height contours on isobaric surfaces
 Pressure-gradient force is the most important 
force because it is the only one that can drive winds 
in the horizontal.  Other horizontal forces can alter 
an existing wind, but cannot create a wind from 
calm air.  All the forces, including pressure-gradient 
force, are explained in the next sections.  However, 
to understand the pressure gradient, we must first 
understand pressure and its atmospheric variation.
 We can create weather maps showing values 
of the pressures measured at different horizontal 
locations all at the same altitude, such as at mean-
sea-level (MSL).  Such a map is called a constant-
height map.  However, one of the peculiarities of 
meteorology is that we can also create maps on oth-
er surfaces, such as on a surface connecting points 
of equal pressure.  This is called an isobaric map.  
Both types of maps are used extensively in meteo-
rology, so you should learn how they are related. 
 In Cartesian coordinates (x, y, z), height z is geo-
metric distance above some reference level, such 
as the ground or sea level.  Sometimes we use  
geopotential height H in place of z, giving a coor-
dinate set of (x, y, H) (see Chapter 1).  However, an 
alternative coordinate system can use pressure P as 
the vertical coordinate, because pressure decreases 
monotonically with increasing height.  Pressure 
coordinates consist of (x, y, P).  
 A monotonic variable is one that changes only 
in one direction.  For example, it increases or is 
constant, but never decreases.  Or it decreases or is 
constant, but never increases.  Pressure in the atmo-
sphere always decreases with increasing height.
 A surface connecting points of equal pressure is 
an isobaric surface.  In low-pressure regions, this 
surface is closer to the ground than in high-pressure 
regions (Fig. 10.2b).  Thus, this surface curves up and 
down through the atmosphere.  Although isobaric 
surfaces are not flat, we draw them as flat weather 
maps on the computer screen or paper (Fig. 10.2d).
 Low pressures on a constant-height map cor-
respond to low heights on a constant-pressure 
surface.  High pressures on a constant height map 
correspond to high heights on a constant pressure 
surface.  Similarly, regions on a constant-height map 
that have tight packing (close spacing) of isobars 
correspond to regions on isobaric maps that have 
tight packing of height contours, both of which are 
regions of strong pressure gradients that can drive 
strong winds.  This one-to-one correspondence of 
both types of maps (Figs. 10.2c & d) makes it easier 
for you to use them interchangeably.

Figure 10.2
(a) Vertical slice through atmosphere, showing pressure values 
(kPa).  Thick dashed line is the 70 kPa isobar.  Thin straight line 
is the 3 km height contour.  The location of lowest pressure on 
the height contour corresponds to the location of lowest height 
of the isobar.   (b) 3-D sketch of the same 70 kPa isobaric sur-
face (shaded), and 3 km height surface (white).   (c) Pressures 
intersected by the 3 km constant height surface.  (d) Heights 
crossed by the 70 kPa surface.  The low-pressure center (L) in (c) 
matches the low-height center in (d).  
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 It is impossible for two different isobaric surfaces 
to cross each other.  Also, these surfaces never fold 
back on themselves, because pressure decreases 
monotonically with height.  However, they can in-
tersect the ground, such as frequently happens in 
mountainous regions.
 Isobaric charts will be used extensively in the re-
mainder of this book when describing upper-air fea-
tures (mostly for historical reasons; see Focus box).   
Fig. 10.3 is a sample weather map showing height 
contours of the 30 kPa isobaric surface. 

plotting Winds
 Symbols on weather maps are like musical notes 
in a score — they are a shorthand notation that con-
cisely expresses information.  For winds, the symbol 
is an arrow with feathers (or barbs and pennants).  
The tip of the arrow is plotted over the observation 
(weather-station) location, and the arrow shaft is 
aligned so that the arrow points toward where the 
wind is going.  The number and size of the feath-
ers indicates the wind speed (Table 10-1, copied from 
Table 9-9).  Fig. 10.3 illustrates wind barbs.

FocUs • Why use isobaric maps?

 Constant pressure charts are used for five reasons.  
First, the old radiosonde (consisting of weather sen-
sors hanging from a free helium balloon that rises 
into the upper troposphere and lower stratosphere) 
measured pressure instead of altitude, so it was easier 
to plot their measurements of temperature, humid-
ity and wind on an isobaric surface.  For this reason, 
upper-air charts (i.e., showing weather above the 
ground) traditionally have been drawn on isobaric 
maps.  
 Second, aircraft altimeters are really pressure 
gauges.  Aircraft assigned by air-traffic control to a 
specific “altitude” above 18,000 feet MSL will actually 
fly along an isobaric surface.  Many weather observa-
tions and forecasts are motivated by aviation needs.
 Third, pressure is a measure of mass in the air, so 
every point on an isobaric map has the same number 
of air molecules above it.  
 Fourth, an advantage of using equations of motion 
in pressure coordinates is that you do not need to con-
sider density, which is not routinely observed.
 Fifth, some weather forecast models use pressure 
coordinate systems in the vertical.   
 However, more and more routine upper-air sound-
ings around the world are being made with modern 
GPS (Global Positioning System, satellite 
triangulation method) sondes that can measure geo-
metric height as well as pressure.  Also, some of the 
modern weather forecast models do not use pressure 
as the vertical coordinate.  In the future, we might see 
the large government weather data centers starting to 
produce upper-air weather maps on constant height 
surfaces.

Table 10-1.  Interpretation of wind barbs.

Symbol Wind Speed Description

calm two concentric circles

1 - 2 speed units shaft with no barbs

5 speed units a half barb (half line)

10 speed units each full barb (full line)

50 speed units each pennant (triangle)

• The total speed is the sum of all barbs and pennants.  
For example,  indicates a wind from the west at 
speed 75 units. Arrow tip is at the observation location.
• CAUTION: Different organizations use different 
speed units, such as knots, m/s, miles/h, km/h, etc.  
Look for a legend to explain the units.  When in doubt, 
assume knots — the WMO standard.  For unit conver-
sion, a good approximation is 1 m/s ≈ 2 knots.  

Solved Example
 Draw wind barb symbol for winds from the: 
(a) northwest at 115 knots;  (b) northeast at 30 knots.

Solution
(a) 115 knots = 2 pennants + 1 full barb + 1 half barb.
(b) 30 knots = 3 full barbs
     
Check:  Consistent with Table 10-1.  
Discussion: Feathers (barbs & pennants) should be 
on the side of the shaft that would be towards low 
pressure if the wind were geostrophic.  

Figure 10.3
Weather map for a 30 kPa constant pressure surface over central 
N. America.  Solid contours show height z (km) of this surface 
above mean sea level (MSL).  Hence, this is called a “30 kPa 
height chart”.  Wind barbs (Table 10-1) show wind observations 
in knots (2 knots ≈ 1 m/s).  The relative maxima and minima 
heights are labeled as H (high heights) and L (low heights).
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neWton’s seconD LaW oF motion

Lagrangian momentum Budget
 Forces, winds, and acceleration are vectors pos-
sessing both magnitude and direction.  Newton’s 
second law of motion (often shortened to New-
ton’s second law) states that a vector force 

→ →=
 

   ·  F m a  
acting on an object such as an air parcel of mass m 
causes it to accelerate  

→ →=
 

   ·  F m a  in the same direction as the 
applied force:

              
→ →=

 
   ·  F m a  •(10.1)

Acceleration is defined as the rate of change of ve-
locity with time t:

          
→

→
=

 

    
∆
∆

 a
V
t

 (10.2)

where  
→
V     is the vector wind velocity. 

 Combining eqs. (10.1) and (10.2) give  

    → →
=

 

   ·
∆
∆

 F m
V
t

 (10.3a)

If mass is constant, then the equation can be written 
as:

    → →
=

 

  
∆( · )

∆
 F

m V
t

 (10.3b)

But mass times velocity equals momentum.  Thus, 
eq. (10.3b) describes the change in momentum 
with time following the air parcel; namely, it is the 
Lagrangian momentum budget.
 Rearranging eq. (10.3a) gives a forecast equation 
for the wind velocity:

    
→ →

=∆
∆
V
t

F
m
net  (10.4)

The subscript “net” implies that there might be 
many forces acting on the air parcel, and we need to 
consider the vector sum of all forces in eq. (10.4), as 
given by Newton’s Corollary 1 (see Focus box).

 For situations where 
→ →=

 
   ·  F m anet/m = 0, eq. (10.4) tells us 

that the flow will maintain constant velocity due to 

inertia.  Namely, ∆
→
V  /∆t = 0 implies that 

→
V   = constant (not that 

→
V   = 0).  

FocUs • in newton’s own Words

 Newton’s laws of motion, in his own words, are 
given below.  Actually, his original words were Latin, 
the language of natural philosophy (science) at that 
time (1687).  Here is the translation from Newton’s 
Philosophiæ Naturalis Principia Mathematica (“Math-
ematical Principles of Natural Philosophy”):
 “Law I.  Every body perseveres in its state of be-
ing at rest or of moving uniformly straight forward, 
except inasmuch as it is compelled by impressed forc-
es to change its state.
 “Law II.  Change in motion is proportional to the 
motive force impressed and takes place following the 
straight line along which that force is impressed.
 “Law III.  To any action, there is always a con-
trary, equal reaction; in other words, the actions of 
two bodies each upon the other are always equal and 
opposite in direction.
 “Corollary 1.  A body under the joint action of 
forces traverses the diagonal of a parallelogram in the 
same time as it describes the sides under their sepa-
rate actions.”

Solved Example
 A 1500 kg car accelerates from 0 to 60 mph (0 to 96.6 
km/h) in 9 seconds, heading south.  (a) Find its aver-
age acceleration. (b) What magnitude and direction of 
force acted on it to make it accelerate? 

Solution

Given:  
→
V  initial = 0,  

→
V  final = 60 mph = 27 m/s

  tinitial = 0,   tfinal = 9 s.    Direction is south.
  m = 1500 kg.

Find:  
→ →=

 
   ·  F m a  = ? m·s–2  ,  

→ →=
 

   ·  F m a = ? N

(a) Use eq. (10.2):   
→

→
=

 

    
∆
∆

 a
V
t

  

 = (27 – 0 m/s) / (9 – 0 s)  =   3 m·s–2  to the south

(b) Use eq. (10.1):   
→ →=

 
   ·  F m a = (1500 kg) · (  3 m·s–2 ) 

    = 4500 N  to the south
 (From Appendix A, recall that 1 N = 1 kg·m·s–2)

Check:  Units OK.  Physics OK.
Discussion:  If the car falls off a cliff, gravity would 
accelerate it at g = –9.8 m·s–2 , where the negative sign 
denotes the downward direction.



 R. STULL   •   METEoRoLoGy  FoR  SCIENTISTS  AND  ENGINEERS 293

eulerian momentum Budget
 For wind forecasts over a fixed location such as 
a town or lake, use an Eulerian reference frame.  
Define a local Cartesian coordinate system with x 
increasing toward the local East, y toward the local 
North, and z up (see Chapter 1).
 Wind components in a Cartesian framework can 
be found by rewriting the vector equation (10.4) as 
three separate scalar equations: one for the west-to-
east wind component (U), one for the south-to-north 
component (V), and one for the vertical component 
(W):
    ∆

∆
=U

t

F

m
x net  •(10.5a)

    ∆
∆

=V
t

F

m
y net  •(10.5b)

    
∆
∆

=W
t

F

m
z net

 •(10.5c)

where subscripts (x, y, z) indicate the component 
of the net vector force toward the (east, north, up), 
respectively.  Relationships between the horizontal 
“speed and direction” method of representing a vec-
tor wind versus the “U and V component” method 
were given in Chapter 1.
 Recall that  ∆U/∆t = [U(t+∆t) – U(t)]/∆t.   Thus, we 
can rewrite eqs. (10.5) as forecast equations:

    U t t U t
F

m
t

x net
( ) ( ) ·+ ∆ = + ∆  •(10.6a)

    V t t V t
F

m
t

y net
( ) ( ) ·+ ∆ = + ∆  •(10.6b)

    W t t W t
F

m
t

z net
( ) ( ) ·+ ∆ = + ∆  •(10.6c)

 These equations are often called the equations 
of motion. Together with the continuity equation 
(later in this chapter), the equation of state (ideal gas 
law from Chapter 1), and the energy budget equations 
in the Heat and Moisture chapters, they describe the 
dynamic and thermodynamic state of the air. 
 To forecast winds [U(t+∆t), V(t+∆t), W(t+∆t)] at 
some future time, we must know the winds now 
[U(t), V(t), W(t)], and the forces acting on the air.  
Mathematically, this is known as an initial-value 
problem, because we must know the initial winds 
to forecast the future winds.  Even numerical weath-
er forecast models (see the NWP chapter) must start 
with an analysis of current weather observations. 
 Average horizontal winds are often 100 times 
stronger than vertical winds, except in thunder-
storms and near mountains.  We will focus on hori-
zontal forces and winds first, and return to vertical 
winds later in this chapter. 

Solved Example
 If  Fx net/m = 1x10–4 m·s–2 acts on air initially at rest, 
then what is the final wind speed after 10 minutes?

Solution
Given: U(0) = 0 ,   Fx net/m = 1x10–4 m·s–2 ,   ∆t = 600 s
Find:  U(∆t) = ? m/s.            Assume:  V=0.

Use eq. (10.6a):   U(t+∆t) = U(t) + ∆t · (Fx net/m)
  = 0 + (600s)·(1x10–4 m·s–2)   = 0.06 m/s.

Check:  Units OK.  Physics OK.
Discussion:  Not very fast, but over many hours it 
becomes large.  Positive U means it is toward the east.

on DoinG science • Be creative

 Isaac Newton grew up on his mother’s farm at 
Woolsthorpe, and built model windmills, clocks, and 
sundials.  His grades in school were OK.  He got into  
fights with his classmates, and carved his name in his 
desk.  His schoolmaster saw a spark of talent in Isaac, 
and suggested to his mother that Isaac should go to 
college, because he would never be a good farmer.  
 At age 18, Isaac Newton went to Cambridge Uni-
versity in England in 1661, and after working at odd 
jobs to pay his way, finally graduated with a B.A. in 
1665.  Later that year the plague hit, killing 10% of the 
London population in three months.  For fear that the 
plague would spread, Cambridge Univ. was closed 
until 1667.  Isaac and the other students went home.  
 He continued his scientific studies in seclusion at 
his mother’s farmhouse during the 18 months that 
school was closed.  During this period, at age 23 to 
24, he laid the groundwork for many of his major dis-
coveries.  This included the laws of motion, the study 
of optics, the invention of the reflecting telescope, the 
explanation for the orbits of planets, the understand-
ing of gravity, and the co-invention of calculus. 
 Often the most creative science, music, literature, 
and art are done by young men and women who have 
not been biased and (mis)directed by studying the 
works of others too much.  Such knowledge of past 
work will often subconsciously steer one’s research in 
the directions that others have already taken, which 
unfortunately discourages novel ideas. 
 Be creative, and learn from your mistakes.  So what 
if you “re-invent the wheel”, and “discover” some-
thing that was already discovered a century ago.  The 
freedom to make personal discoveries and mistakes 
and the knowledge you gain by doing so allows you 
to be much more creative than if you had just read 
about the end result in a journal. 
 So we have a paradox.  I wrote this book to help 
you learn the meteorological advances made by oth-
ers, but I discourage you from studying the works 
of others.  As a scientist or engineer, you must make 
your own decision about the best balance of these two 
philosophies that will guide your future work.
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horizontaL Forces

  To solve the equations of motion for horizontal 
winds in an Eulerian framework, we need to know 
the horizontal forces acting on the air.  The net 
“force per unit mass” consists of contributions from 
advection (AD), pressure-gradient force (PG), 
Coriolis force (CF), and turbulent drag (TD).  In 
addition, imbalances between forces sometimes bal-
ance centrifugal force (CN):

 
F

m

F

m

F

m

F

m

F

m

F

m
xnet x AD x PG xCN xCF xTD

   = + + + + (10.7a)

 F

m

F

m

F

m

F

m

F

m

F

m
y net y AD y PG yCN yCF yTD

   = + + + + (10.7b)

Units of force per mass are N/kg, which is identical 
to units of  m·s–2  (see Appendix A).  We will use 
these latter units.

advection
 Not only can wind blow air of different tempera-
ture or humidity into a region, but it can also blow 
air of different specific momentum (i.e., momen-
tum per unit mass).  Recall that momentum is de-
fined as mass times velocity, hence specific momen-
tum equals the velocity (i.e., the wind) by definition.  
Thus, the wind can blow different winds into a re-
gion.  Namely, winds can change due to advection, 
in an Eulerian framework.
 This is illustrated in Fig. 10.4a.  Consider a mass of 
air (grey box) with slow U wind (5 m/s) in the north  
and faster U wind (10 m/s) in the south.  Thus, U 
decreases toward the north, giving ∆U/∆y = negative.  
This whole air mass is advected toward the north 
over a fixed weather station “O” by a mean wind (V 
= positive).  At the time sketched in Fig. 10.4b, a west 
wind of 5 m/s is measured at “O”.  Later, at the time  
of Fig. 10.4c, the west wind has increased to 10 m/s 
at the weather station.  The rate of increase of U at 
“O” is larger for faster advection (V), and is larger if 
∆U/∆y is more negative. 
 Thus,  ∆U/∆t = –V · ∆U/∆y  for this example.  The 
advection term on the RHS causes an acceleration 
of U wind on the LHS, and thus acts like a force per 
unit mass:  ∆U/∆t = Fx AD/m =  –V · ∆U/∆y .
  Advection is not usually considered a force in the 
traditional Lagrangian sense, but you must always 
include it when momentum budget equations are 
rewritten in Eulerian frameworks.  You have seen 
similar advection terms in the Eulerian heat and 
moisture budget equations earlier in this book.

science Graffito

 “If I have been able to see further than others, it 
was because I stood on the shoulders of giants.” 
– Sir Isaac Newton.

Figure 10.4
Illustration of V advection of U wind.  “O” is a fixed weather 
station. Grey box is an air mass containing a gradient of U 
wind.  Initial state (a) and later states (b and c).
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 In general, the components of advective force per 
unit mass are:

    
F

m
U

U
x

V
U
y

W
U
z

x AD = − ∆
∆

− ∆
∆

− ∆
∆

· · · •(10.8a)

    
F

m
U

V
x

V
V
y

W
V
z

y AD = − ∆
∆

− ∆
∆

− ∆
∆

· · · •(10.8b)

where ∆U/∆x is the gradient of U-wind in the x-di-
rection, and the other gradients are defined similar-
ly.  Advection needs a gradient (i.e., change across a 
distance).  Without a change of wind with distance, 
momentum advection cannot cause accelerations
 Vertical advection of horizontal wind (–W·∆U/∆z 
in eq. 10.8a, and –W·∆V/∆z in eq. 10.8b) also exists.  
But W is often very small outside of thunderstorms, 
so we neglect vertical advection here.

pressure-Gradient Force
 Pressure-gradient force always acts perpendicu-
larly to the isobars (or height contours) on a weather 
map, from high to low pressure (or heights).  This 
force exists regardless of the wind speed, and does 
not depend on the wind speed.  It starts the horizon-
tal winds and can accelerate, decelerate, or change 
the direction of existing winds. On a weather map, 
more closely spaced isobars (i.e., more closely 
packed, with smaller distance ∆d between them) in-
dicate a greater pressure-gradient force (Fig. 10.5).
 The components of pressure-gradient force are:

    F

m
P
x

x PG = − ∆
∆

1
ρ

·  •(10.9a)

    F

m
P
y

y PG = − ∆
∆

1
ρ

·
 •(10.9b)

Solved Example
 Vancouver (British Columbia, Canada) is roughly 
250 km north of Seattle (Washington, USA).  The winds 
(U, V) are (8, 3) m/s in Vancouver and (5, 5) m/s in Se-
attle.  Find the advective force per unit mass.

Solution
Given: (U, V) =  (8, 3) m/s in Vancouver, 
  (U, V) =  (5, 5) m/s in Seattle
 ∆y = 250 km,  ∆x = not relevant (unknown)
Find:  Fx AD/m =?  m·s–2 ,      Fy AD/m =?  m·s–2 

Use the definition of a gradient:
 ∆U/∆y = (8 – 5 m/s)/250,000 m = 1.2x10–5 s–1 
 ∆U/∆x = 0 (unknown in this problem)
 ∆V/∆y = (3 – 5 m/s)/250,000 m = –0.8x10–5 s–1 
 ∆V/∆x = 0 (unknown)
Average U = (8 + 5 m/s)/2 = 6.5 m/s
Average V = (3 + 5 m/s)/2 = 4 m/s

Use eq. (10.8a):
 Fx AD/m  = –(6.5m/s)·0 – (4m/s)·(1.2x10–5 s–1 )
  =   –4.8x10–5 m·s–2 
Use eq. (10.8b):
 Fy AD/m =  –(6.5m/s)·0 – (4m/s)·(–0.8x10–5 s–1 )
  =    3.2x10–5 m·s–2 

Check:  Units OK.  Physics OK.
Discussion:  The U winds are slower in Seattle than 
Vancouver, but are being blown toward Vancouver by 
the southerly flow.  Thus, advection is decreasing the 
U-wind, hence, the negative sign.  The V-wind is faster 
in Seattle, and these faster winds are being blown to-
ward Vancouver, causing a positive acceleration there.

Figure 10.5
Pressure gradient force (heavy line) is perpendicular to isobars 
(medium lines) from high to low pressure.  H and L indicate 
regions of high and low pressure, respectively.

Solved Example
 Milwaukee is 100 km east of Madison, Wisconsin,   
USA.  The sea-level pressure at Milwaukee is 100.1 kPa 
and at Madison is 100 kPa.  What is the pressure gradi-
ent force per mass?  Assume ρ = 1.2 kg·m–3.

Solution
Define: Cartesian coord. with x = 0 at Madison.
Given: P = 100.1 kPa at x = 100 km, 
  P = 100.0 kPa at x = 0 km.     ρ = 1.2 kg·m–3.
Find:  Fx PG/m =?  m·s–2 

Use eq. (10.9a):

     

F

m
y PG = − −

−
1

1 1

101 000 100 000
4( . · )

 ·  
( , , )

(kg m

Pa
3 000 000 0, )− m

  = –8.33x10–4  m·s–2.
where  1 Pa = 1 kg·m–1·s–2 was used (Appendix A).

Check:  Units OK.  Physics OK.
Discussion:  The negative answer implies that the 
force is in the negative x-direction; that is, from Mil-
waukee toward Madison.
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where ρ is air density, and ∆P is the change of pres-
sure across distance ∆x or ∆y.  The negative sign 
makes the force act from high toward low pressure.   
 The magnitude of pressure-gradient force is

    F
m

P
d

PG = 1
ρ

·
∆
∆

 (10.10)

where ∆d is the distance between isobars.
 The hydrostatic equation (1.25) can be used to 
convert the pressure-gradient terms from height 
to pressure coordinates.  On isobaric surfaces, the 
pressure-gradient terms become:

    
F

m
g

z
x

x PG = − ∆
∆

·  (10.11a)

    
F

m
g

z
y

y PG = − ∆
∆

·  (10.11b)

where ∆z/∆x and ∆z/∆y are the slopes of the isobaric 
surfaces (i.e., change of height with distance), and 
|g| = 9.8 m·s–2 is the magnitude of gravitational ac-
celeration.  If you could place a hypothetical ball on 
the isobaric surface plotted in Fig. 10.2b, the direc-
tion that it would roll downhill is the direction of 
the pressure-gradient force, and the magnitude is

    F
m

g
z
d

PG = ·
∆
∆

 (10.12)

where ∆d is distance between height contours.
 Pressure-gradient force is the ONLY force that 
can drive the horizontal winds in the atmosphere.  
The other forces, such as Coriolis, drag, centrifugal, 
and even advection, disappear for zero wind speed.  
Hence, these other forces can change the direction 
and speed of an existing wind, but they cannot cre-
ate a wind out of calm conditions.

centrifugal Force
 Newton’s laws of motion state that an object 
tends to move in a straight line unless acted upon by 
a force in a different direction.  Such a force, called 
centripetal force, causes the object to change direc-
tion and bend its trajectory.  Centripetal force is 
the sum or the imbalance of other forces.  
 Centrifugal force is an apparent force that is 
opposite to centripetal force and pulls outward from 
the center of the turn.  The components of centrifu-
gal force are

                
F

m
s

V M
R

xCN = + ·
·

 •(10.13a)

                
F

m
s

U M
R

y CN = − ·
·

 •(10.13b)

Solved Example
 If the height of the 50 kPa pressure surface decreas-
es by 10 m northward across a distance of 500 km, what 
is the pressure-gradient force?

Solution
Given: ∆z = –10 m, ∆y = 500 km, |g|= 9.8 m·s–2 .
Find:  FPG/m = ? m·s–2 

Use eqs. (10.11a & b):
Fx PG/m = 0 m·s–2  , because ∆z/∆x = 0.   Thus, FPG/m  
=  Fy PG/m.

   
F

m
g

z
y

y PG = − ∆
∆

= − 





−


· . ·
,

9 8
10

500 000
m

s

m
m2




    FPG/m   =  0.000196 m·s–2

Check:  Units OK.  Physics OK.  Sign OK.
Discussion:  For our example here, height decreases 
toward the north, thus a hypothetical ball would roll 
downhill toward the north.  A northward force is in 
the positive y direction, which explains the positive 
sign of the answer.

Table 10-2.  Sign  s  for centrifugal-force equations.

Hemisphere
For flow around a

Low High

Northern +1 –1

Southern –1 +1

Solved Example
 On the back side of a low pressure center in the 
northern hemisphere, winds are from the north at 10 
m/s at distance 250 km from the low center.  Find the 
centrifugal force.

Solution
Given: R = 2.5x105 m,
  V = – 10 m/s
Find:  Fx CN/m = ? m·s–2.   

Use eq. (10.13a), with s = +1 from Table 10-2.

F

m
xCN = −

−
×

1
5 5

5 105·
( ·(m/s) m/s)

  =  –4x10–4 m·s–2.

Check:  Units OK.  Physics OK.  Sketch OK.
Discussion:  The negative sign indicates a force to-
ward the west, which is indeed outward from the cen-
ter of the circle.
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where s is a sign coefficient given in Table 10-2, 
M = ( U2 + V2 )1/2 is wind speed (always positive), 
and R is the radius of curvature.  The sign depends 
on whether air is circulating around a high or low 
pressure center, and whether it is in the Northern or 
Southern Hemisphere.  
 The total magnitude is:

        F
m

M
R

CN =
2

 (10.14)

coriolis Force
 Coriolis force is an apparent force caused by the 
rotation of the Earth.  It acts perpendicular to the 
wind direction, to the right in the N. Hemisphere, 
and to the left in the Southern (Fig. 10.6).  
 To understand Coriolis force, we need to quan-
tify the rotation rate of the Earth.  The Earth rotates 
one full revolution (2π radians) during a sidereal 
day (i.e., relative to the fixed stars, Psidereal is a bit less 
than 24 h, see Appendix B), giving an angular rota-
tion rate of

   Ω = 2· /π Psidereal   •(10.15)

         = 0.729 211 6 x 10–4 radians/s 

The units for Ω are often abbreviated as  s–1.  Using 
this rotation rate, a Coriolis parameter is defined 
as
    fc = 2· · sin( )Ω φ     •(10.16)

where 2·Ω = 1.458423x10–4 s–1, and ϕ is latitude.  
This parameter is constant at any fixed location.  At 
mid-latitudes, the magnitude is on the order of  fc = 
1x10–4 s–1.
 In the N. Hemisphere, the Coriolis force is:

    
F

m
f V

xCF
c= ·  •(10.17a)

     F

m
f U

y CF
c= − ·  •(10.17b)

Thus, there is no Coriolis force when there is no 
wind.  Coriolis force cannot cause the wind to blow; 
it can only change its direction. 
 The magnitude of Coriolis force is:

  | FCF /m |  ≈   2 · Ω ·|sin(ϕ)·M| (10.18a)
or
  | FCF /m |  ≈   | fc · M | (10.18b)

as is shown in the 2nd Focus box on Coriolis force. 

Solved Example
a) Plot Coriolis parameter vs. latitude. b) Find Coriolis 
force at Norman, OK, USA, for a wind of U = 10 m/s.

Solution
Given: U = 10 m/s,    ϕ =  35.2°N at Norman.
Find:  Plot fc vs ϕ.   Also:  Fy CF/m = ? m·s–2.

a) Find fc (s–1) vs. ϕ(°) using eq. (10.16).  For example:
 fc = (1.458x10–4 s–1)·sin(35.2°)  =  8.4x10–5 s–1.

    

b) Coriolis force in the y-direction (eq. 10.17b) is:
  Fy CF/m = –(8.4x10–5 s–1)·(10m/s)  = – 8.4x10–4 m·s–2.

Check:  Units OK.  Physics OK.
Discussion: The – sign means force is north to south.

Figure 10.6
Coriolis force  (dark lines).

FocUs  •  coriolis Force in 3-D

 Eqs. (10.17) give only the dominant components 
of Coriolis force.  There are other smaller-magnitude 
Coriolis terms (labeled small below) that are usually 
neglected.   The full Coriolis force in 3-dimensions is:

   
F

m
f V W

xCF
c= −· ·cos( )·2Ω φ  (10.17c)

                                 [small because often W<<V]

   
F

m
f U

y CF
c= − ·  (10.17d)

   
F

m
U

zCF = 2Ω·cos( )·φ  (10.17e)
                  [small relative to other vertical forces]  
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  FOCUS • Coriolis Force  (continuation)

 

Figure 10.c.   Forces.

 Now that “up” and “down” are identified, we 
can split centrifugal and actual gravitational forces 
into local horizontal (subscript H) and vertical (sub-
script V) components (Fig. 10.c).  Because FCN is al-
ways parallel to the equator (EQ), trigonometry gives 
FCNH  ≈ FCN·sin(ϕ),  where ϕ is latitude.

Objects at Rest
 The Earth rotates counterclockwise when viewed 
from above the north pole (NP). During time interval 
∆t, any single meridian (a longitude line, such as la-
beled with distance R in Fig. 10.d) will rotate by angle 
Ω ∆t, where Ω is the angular velocity of Earth (= 360°/
sidereal day).
 Suppose an object (the dark circle) is at rest on this 
meridian.  Then during the same time interval ∆t, it 
will move as shown by the grey arrow, at speed
Mtan = Ω·R.  Because this movement follows a parallel 
(latitude line), and parallels encircle the Earth’s axis, 
the stationary object is turning around a circle.  
This creates centrifugal force. 
The horizontal component
FCNH balances FGH, 
giving zero net 
apparent horizontal
force on the object 
(Fig. 10.d). 

   Figure 10.d.
   Object at rest.
     

Objects Moving East or West
 Next, we can ask what happens if the object moves 
eastward with velocity M relative to the Earth’s sur-
face (shown by the thin white arrow in Fig. 10.e).  The 
Earth is rotating as before, as indicated by the thin 
meridian lines in the figure.  Thus, the total move-
ment of the object is faster than before, as shown by 
the grey arrow.  This implies greater total centrifugal 
force, which results in a greater horizontal compo-
nent FCNH.  However, the gravity component FGH is 
unchanged. 
     (continues in next column)

FocUs  •  What is coriolis Force?

 In 1835, Gaspar Gustave Coriolis used kinetic-en-
ergy conservation to explain the apparent force that 
now bears his name.  The following clarification was 
provided by Anders Persson in 1998 and 2006.  

Background
 Coriolis force can be interpreted as the difference 
between two other forces: centrifugal force and gravi-
tational force.  
 As discussed previously, centrifugal force is 
FCN/m = (Mtan)2/R , where Mtan is the tangential 
velocity of an object moving along a curved path 
with radius of curvature R (see Fig. 10.a).  This force 
increases if the object moves faster, or if the radius 
becomes smaller.  The symbol X marks the center of 
rotation of the object, and the small black circle indi-
cates the object.

    

   Figure 10.a.    Centrifugal force, FCN.

 Because the Earth is plastic (i.e., deformable), cen-
trifugal force due to the Earth’s rotation and gravi-
tational force FG have shaped the surface into an 
ellipsoid, not a sphere.  This is exaggerated in Fig. 
10.b.  The vector sum of  FG  and  FCN  is the effec-
tive gravity, FEG.  This effective gravity acts per-
pendicular to the local surface, and defines the direc-
tion we call down.  Thus, a stationary object feels 
no net force (the downward force is balanced by the 
Earth holding it up). 

Figure 10.b.
North-south
slice through
Earth.  
               

(continues in
next column)
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  FOCUS • Coriolis Force  (continuation)

Figure 10.e.  Figure 10.f.
Object moving east.  Object moving west.

 Thus, those two forces (FCNH & FGH) do NOT bal-
ance.  The difference between them is a net force to 
the right of the relative motion M.  This force differ-
ence is called Coriolis force, FCF , and is indicated 
by the thick white arrow in Fig. 10.e. 
 Similarly, for an object moving westward (thin 
white arrow in Fig. 10.f), the net tangential velocity 
(grey arrow) is slower, giving an imbalance between 
FCNH & FGH that acts to the right of M.  This is identi-
fied as Coriolis force, as shown with the thick white 
arrow.

Objects Moving North or South
 For a northward moving object, the rotation of the 
Earth (dashed thick grey line) and the relative mo-
tion of the object (M, thin white arrow) combine to 
cause a path shown with the solid thick grey line (Fig. 
10.g).  This has a smaller radius of curvature (R) about 
a center of rotation (X) that is NOT on the North Pole 
(O).  The smaller radius causes a greater horizontal 
component of centrifugal force (FCNH), which points 
outward from X.  

 
Figure 10.g.  Object moving north.

 We can conceptually divide this horizontal cen-
trifugal force into a north-south component (FCNH-ns) 
and an east-west component (FCNH-ew).  The south-
ward component FCNH-ns balances the horizontal 
     (continues in next column)

  FOCUS • Coriolis Force  (continuation)

gravitational component FGH, which hasn’t changed 
very much relative to the other changes.  However, 
the east-west component is acting to the right of the 
relative object motion M, and is identified as Coriolis 
force:   FCF = FCNH-ew. 
 Similarly, a southward moving object has a larg-
er radius of curvature, giving a Coriolis force to the 
right.  In fact, an object moving in any arbitrary direc-
tion has Coriolis force acting to the right in the North-
ern Hemisphere. 

Magnitude of Coriolis Force
 For an object at rest (Figs. 10.c & d): 

   FGH  =  FCNH   ≡  FCNHR (C1)

where subscript R  denotes “rest”.  At rest:
 
    Mtan rest = Ω · R   (C2)

 For an eastward moving object (Fig. 10.e), Coriolis 
force is defined as:

  FCF  ≡  FCNH – FGH (definition)

     =  FCNH – FCNHR (from eq. C1)

     = sin(ϕ) · [FCN – FCNR] (from Fig. 10.c)

Divide by mass m, and plug in the definition for cen-
trifugal force as velocity squared divided by radius:

 FCF / m  =  sin(ϕ)  ·  [ (Mtan)2/R  –  (Mtan rest)2/R ]

Use Mtan = Mtan rest + M, along with eq. (C2):

 FCF / m  = sin(ϕ) · [ (Ω·R+M)2/R  –  (Ω·R)2/R ]

       = sin(ϕ) · [(2·Ω·M)  +  (M2/R)]

 The last term is small & can be neglected compared 
to the first term.  Thus, the magnitude of Coriolis force 
is:
  FCF /m  ≈ 2·Ω·sin(ϕ) · M   (10.18)

            ≡  fc · M  (from eq. 10.16)

This answer is found for motion in any direction.

BeyonD aLGeBra • apparent Forces

In vector form, centrifugal force/mass for an object at 
rest on Earth is –Ω × (Ω × r), and Coriolis force/mass 
is  –2Ω × V , where vector Ω points along the Earth’s 
axis toward the north pole, r points from the Earth’s 
center to the object, V is the object’s velocity relative 
to Earth, and × is the vector cross product.   
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turbulent-Drag Force
 At the Earth’s surface the air experiences drag 
against the ground.  This turbulent-drag force in-
creases with wind speed, and is always in a direc-
tion opposite to the wind direction.  Namely, drag 
slows the wind (Fig. 10.7).  
 Only the boundary layer (see the Atmospheric 
Boundary Layer chapter) experiences this drag.  It 
is not felt by the air in the remainder of the tropo-
sphere (except for deep vigorous thunderstorms or 
for mountain-wave drag, see the Local Winds chap-
ter).  The drag force acting on a boundary layer of 
depth zi is: 

    
F

m
w

U
z

xTD
T

i
= − ·  •(10.19a)

    
F

m
w

V
z

yTD
T

i
= − ·  •(10.19b)

where wT is a turbulent transport velocity.  
 The total magnitude of turbulent drag force is

    
F
m

w
M
z

TD
T

i
= ·  (10.20)

and is opposite to the wind direction.
 During windy conditions of near neutral static 
stability,  turbulence is generated primarily by the 
wind shear (change of wind speed or direction 
with height).  This turbulence transports frictional 
information upward from the ground to the air at 
rate:

    wT = CD · M (10.21)

where wind speed M is always positive, and CD is 
a dimensionless drag coefficient in the range of 
2x10–3 over smooth surfaces to 2x10–2 over rough 
or forested surfaces (see the Atmospheric Boundary 
Layer chapter).  It is similar to the bulk heat transfer 
coefficient that was discussed in the Heat chapter. 
 During statically unstable conditions of light 
winds and strong surface heating (e.g., daytime), 
buoyant thermals transport the frictional informa-
tion upward at rate:

    wT = bD · wB  (10.22)

where wB is the buoyancy velocity scale (always 
positive, see the Heat chapter), and bD = 1.83x10–3 is 
dimensionless.  

Solved Example
 Find the drag force per unit mass on a wind of U 
= 10 m/s, V = 0 for a: (a) statically neutral boundary 
layer over smooth ground; and (b) statically unstable 
boundary layer with wB = 45 m/s.  The boundary layer 
is 1 km thick.

Solution
Given: U = M = 10 m/s,  zi = 1000 m,
  CD = 2x10–3,  wB = 45 m/s.
Find:  Fx TD/m = ? m·s–2. 

(a) Combine eqs. (10.21) and (10.19a):

 
F

m
C M

U
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xTD
D

i
= − = −· · ( . )·

( )
0 02

15
1500

2m/s
m

 = –2x10–4   m·s–2. 

(b) Combine eqs. (10.22) and (10.19a):

    
F

m
b w

U
z

xTD
D B

i
= − · ·

   = −( . )·( )·
( )

0 00183 50
15
1500

m/s
m/s

m

   =  –8.24x10–4   m·s–2. 

Check:  Units OK.  Physics OK.
Discussion:  The negative sign means that the drag 
force is toward the west, which is opposite the wind 
direction.  Both mechanical and buoyant turbulence 
are equally effective at transporting frictional infor-
mation to the air.

Figure 10.7
Turbulent drag force FTD opposes the wind in the boundary 
layer.
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eqUations oF horizontaL motion

 Combining the forces from eqs. (10.7, 10.8, 10.9, 
10.17, and 10.19) into Newton’s Second Law of Mo-
tion (eq. 10.5) gives simplified equations of horizon-
tal motion:
     •(10.23a)
  ∆

∆
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∆
− ∆

∆
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∆
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     •(10.23b)
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} } } } }

tendency
horizontal
advection

pressure
gradient

Coriolis
turbulent

drag

These are the forecast equations for wind.  Centrifu-
gal force is not included because it is the opposite of 
centripetal force, which is the net imbalance of the 
other forces already included above.  
 As was shown in the solved examples, each of 
the terms can be of similar magnitude:  1x10–4  to 

10x10–4  m·s–2 (which is equivalent units of N/kg, 
see Appendix A for review).   For some situations, 
some of the terms are small enough to be neglect-
ed compared to the others.  For example, above the 
boundary layer the turbulent-drag term is near zero.  
Near the equator, Coriolis force is near zero.  At the 
center of high or low pressure regions, the pressure 
gradient is near zero.
  There are other physical processes that have been 
neglected in the simplified equations just presented.  
Molecular friction is significant in the bottom few 
millimeters of the ground.  Mountain-wave drag 
can be large in mountainous regions (see the Local 
Winds chapter).  Cumulus clouds can cause turbu-
lent convective mixing above the boundary layer 
(see the Atmospheric Boundary Layer and Thunder-
storm chapters).  Vertical advection of the horizontal 
wind has been neglected because it often is small.      
Mean vertical motions (e.g., large-scale subsidence) 
will be examined later in this chapter.
 In the section that follows, the equations of mo-
tion are simplified for some special cases, to yield 
theoretical winds in the horizontal.  Where appro-
priate, the forces and winds will also be given in iso-
baric coordinates.

summary of Forces

Table 10-3.  Summary of forces.

Item
Name of 

Force
Direction

Magnitude
(N/kg)

Horiz. (H)
or Vert. (V)

Remarks (“item” is in col-
umn 1; H & V in col. 5)

1 gravity down
F
m

gG =  = 9.8 m·s–2 V hydrostatic equilibrium 
when items 1 & 2V balance

2
pressure 
gradient

from high to low 
pressure

F
m

P
d

PG = 1
ρ

·
∆
∆

V & H
the only force that can drive 

horizontal winds

3 Coriolis
(apparent)

90° to right (left) 
of wind in North-

ern (Southern) 
Hemisphere

F
m

MCF = 2· · sin( )·Ω φ H*
geostrophic wind when 

2H and 3 balance (explained 
later in horiz. wind section)

4
turbulent 

drag
opposite to wind

F
m

w
M
z

TD
T

i
= · H*

boundary-layer wind when 
2H, 3 and 4 balance (explained 

in horiz. wind section)

5 centrifugal
(apparent)

away from center 
of curvature

F
m

M
R

CN =
2

H*
centripetal = opposite of 

centrifugal.  Gradient wind 
when 2H, 3 and 5 balance

6 advection
(apparent)

(any)
F
m

M
U V

d
AD = ·

∆( )
∆
or

V & H
neither creates nor destroys
momentum; just moves it

*Horizontal is the direction we will focus on.  However, Coriolis force has a small vertical component for zonal winds.  Turbulent drag 
can exist in the vertical for rising or sinking air, but has completely different form than the boundary-layer drag given above.  Cen-
trifugal force can exist in the vertical for vortices with horizontal axes.  Note:  units  N/kg  =  m·s–2. 
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horizontaL WinDs

 When air accelerates to create wind, forces such 
as Coriolis and drag change too, because they de-
pend on the wind speed.   This, in turn, changes the 
acceleration via eqs. (10.23), so there is a feedback 
process.  This feedback continues until the forces 
finally balance each other.  At that point, there is no 
net force, and no further acceleration.
 This final condition is called steady state:

    
∆
∆

= ∆
∆

=U
t

V
t

0 0,       •(10.24)

In steady-state, wind speeds do not change with 
time, but are not necessarily zero.  Only the accel-
eration is zero.  
 Under certain idealized conditions, some of the 
forces in the equations of motion are small enough 
to be neglected.  For these situations, theoretical 
steady-state winds can be found based on only the 
remaining larger-magnitude forces.  These theoreti-
cal winds are given special names, as listed in Table 
10-4.  These winds are examined next in more detail.    
The real winds under these special conditions are 
often close to the theoretical winds. 

Geostrophic Wind
 The geostrophic wind (Ug , Vg) is a theoretical 
wind that results from a steady-state balance be-
tween pressure-gradient force and Coriolis force 
(Fig. 10.8).  After setting the other forces to zero, eqs. 
(10.23) become:

    0
1

    ·    ·= − ∆
∆

+
ρ

P
x

f Vc  (10.25a)

    0
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    ·    ·= − ∆
∆

−
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P
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 (10.25b)

 Solving these equations for U and V, and then de-
fining U ≡ Ug  and   V ≡ Vg , gives:

    U
f

P
yg

c
= − ∆

∆
1

ρ ·
·  •(10.26a)

    V
f

P
xg

c
= + ∆

∆
1

ρ ·
·  •(10.26b)

where fc = (1.4584x10–4 s–1)·sin(latitude) is the Coriolis 
parameter, ρ is air density, and ∆P/∆x and ∆P/∆y are 
the horizontal pressure gradients.

Solved Example
 Pressure increases 1 kPa eastward across a dis-
tance of 500 km.  What is the geostrophic wind speed, 
given ρ = 1 kg/m3 and fc = 10–4 s–1 ?

Solution
Given: ∆P =1 kPa, ∆x =500 km, ρ =1 kg/m3, fc =10–4 s–1. 
Find:  G = ? m/s

Ug = 0, thus  G = Vg.    Use eq. (10.26b):

 U
s

g = −
×

−
− −

1

1 2 1 1 10

2
8004 1( . )·( . )

·
( )
(kg/m

kPa
km3 )) = 20 m/s 

Check:  Units OK.  Physics OK.
Discussion:  “Kilo” in the numerator & denominator 
cancel.  Given that ∆P/∆x = 0.002 kPa/km, the answer 
agrees with Fig. 10.10.  The wind is toward the north.

Figure 10.8
Idealized weather map, showing geostrophic wind (G, grey ar-
row) caused by a balance between two forces (black arrows): 
pressure-gradient force (FPG) and Coriolis force (FCF).  P is 
pressure, with isobars plotted as thin black lines.  L and H are 
low and high-pressure regions.  The small sphere represents an 
air parcel.

Table 10-4.  Names of idealized steady-state horizon-
tal winds, and the forces that govern them.

   0
1= − ∆

∆
− ∆

∆
+ − +     ·    ·    ·   

·
U

U
x

P
x

f V w
U
z

s
V M

Rc T
iρ

Forces:
pressure
gradient Coriolis turbulent

drag
centri-
fugal

Wind Name
Geostrophic • •
Gradient • • •
Boundary Layer • • •
BL Gradient • • • •
Cyclostrophic • •
Inertial • •
Antitriptic • •
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 In regions of straight isobars above the top of the 
boundary layer and away from the equator, the ac-
tual winds are approximately geostrophic.   These 
winds blow parallel to the isobars or height con-
tours, with low pressure to the left in the Northern 
Hemisphere (Fig. 10.9). The wind is faster in regions 
where the isobars are closer together (i.e., where the 
isobars are tightly packed) and at lower latitudes 
(Fig. 10.10).  
 The total geostrophic wind speed G is:

    G U Vg g= +2 2  (10.27)

If ∆d is the distance between two isobars (in the di-
rection of greatest pressure change; namely, perpen-
dicular to the isobars), then the magnitude of the 
geostrophic wind is:

    G
f

P
dc

= 1
ρ·

·
∆
∆

 •(10.28)

 Above sea level, weather maps are often on 
isobaric surfaces (constant pressure charts).  The 
geostrophic wind as a function of horizontal dis-
tances between height (z) contours on a constant-
pressure chart is:

    U
g

f
z
yg

c
= − ∆

∆
·  •(10.29a)

    V
g

f
z
xg

c
= + ∆

∆
·  •(10.29b)

where |g| = 9.8 m·s–2 is gravitational acceleration 
magnitude, and fc is the Coriolis parameter.  The 
corresponding magnitude of geostrophic wind on 
an isobaric chart is:

    G
g
f

z
dc

= ·
∆
∆

 •(10.29c)
   

Figure 10.10
Geostrophic wind speed G vs. latitude and height gradient 
(∆z/∆d) on a constant pressure surface.  Top scale is pressure 
gradient at sea level.

Solved Example
 If height increases by 100 m eastward across a dis-
tance of 500 km, then what is the geostrophic wind 
speed, given fc = 10–4 s–1 ?

Solution
Given: ∆z = 100 m,    ∆x = 500 km,    fc = 10–4 s–1 . 
Find:  G = ? m/s

Ug = 0, thus  G = Vg.   Use eq. (10.29b):

 V
g

f
z
xg

c
= + ∆

∆
=







·

.
·

9 8 50
200

m s

0.00009s

m-2

-1 ,, 000m






= 19.6 m/s

Check:  Units OK.  Physics OK.
Discussion:  This is nearly the same answer as be-
fore.  ∆z of 100 m on an isobaric surface corresponds 
to ∆P of roughly 1 kPa on a constant height surface.  A 
hypothetical ball rolling downhill would start moving 
toward the west, but would be deflected northward by 
Coriolis force in the Northern Hemisphere.  

FocUs  •  approach to Geostrophy

 How does an air parcel, starting from rest, ap-
proach the final steady-state geostrophic wind speed 
G sketched in Fig. 10.8?  
 Start with the equations of horizontal motion (10.23), 
and ignore all terms except the tendency, pressure-
gradient force, and Coriolis force.  Use the definition of 
     continues on next page

Figure 10.9
Geostrophic winds (grey arrows) are faster (longer arrows) 
where isobars (thin lines) are closer together.  (For N. Hemis.)



304 CHAPTER  10 DyNAMICS

 If the geopotential  Φ = |g|·z  is substituted in 
eqs. (10.29), the resulting geostrophic winds are:

    U
f yg
c

= − 1
·
∆
∆

Φ
 (10.30a)

    V
f xg
c

= 1
·
∆
∆

Φ  (10.30b)

Gradient Wind
 Around a high or low pressure center, the steady-
state wind follows the curved isobars, with low pres-
sure to the left in the Northern Hemisphere.  Around 
lows, the wind is slower than geostrophic, called 
subgeostrophic, regardless of the hemisphere.  
Around highs, the steady-state wind is faster than 
geostrophic, or supergeostrophic.  The curved 
steady-state wind is called the gradient wind.  
 The gradient wind occurs because of an imbal-
ance (Figs. 10.11 & 10.12) between pressure-gradient 
(FPG) and Coriolis forces (FCF); namely, the net force 
(Fnet) is not zero.  This net force is called centripe-
tal force, and is what causes the wind to continu-
ally change direction as it goes around a circle.  By 
describing this change in direction as causing an 
apparent force (centrifugal), we can find the steady-
state gradient wind:

    0
1

    ·    ·    ·
·

= − ∆
∆

+ +
ρ

P
x

f V s
V M

Rc  (10.31a)

    0
1

    ·    ·    ·
·

= − ∆
∆

− −
ρ

P
y

f U s
U M

Rc  (10.31b)

} } }

pressure
gradient

Coriolis centrifugal

 Because the gradient wind is for flow around a 
circle, we can frame the governing equations in ra-
dial coordinates:

    
1 2

ρ
· · tan

tan∆
∆

= +P
R

f M
M

Rc  (10.32)

where R is radial distance from the center of the 
circle, fc is the Coriolis parameter, ρ is air density, 
∆P/∆R is the radial pressure gradient, and Mtan is 
the magnitude of the tangential velocity; namely, 
the gradient wind.  The signs of the terms in this 
equation are for flow around a low.  

FocUs  •  appr. to Geostrophy   (continued)

geostrophic wind (eqs. 10.26) to write the resulting 
simplified equations as:

   

∆ / ∆ ·( )

∆ / ∆ ·( )

U t f V V

V t f U U
c g

c g

= − −

= −

Next, rewrite these as forecast equations:

  

U U t f V V

V V t f U
new old c g old

new old c

= − −

= +

∆ · ·( )

∆ · ·( gg newU− )

Start with initial conditions (Uold, Vold) = (0, 0), and 
then iteratively solve the equations on a spreadsheet 
to forecast the wind.  
 For example, consider the conditions given in the 
previous solved example, where we would anticipate 
the wind should approach (Ug, Vg) = (0, 20) m/s.  The 
actual evolution of winds (U, V) and air parcel posi-
tion (X, Y) are shown in Figs. below.  
 

   

 Surprisingly, the winds never reach geostrophic 
equilibrium, but instead rotate around the geostrophic 
wind.  This is called an inertial oscillation, with 
period of P = 2·π/fc.  Twice this period is called a pen-
dulum day.  For our solved example, P = 17.45 h.  
 The net result in the figure below is that the 
wind indeed moves at the 
geostrophic speed of 20 m/
s to the north (≈ 1250 km in 
17.45 h), but along the way it 
staggers west and east with 
an additional ageostrophic 
(non-geostrophic) part.
 Inertial oscillations are 
sometimes observed at night 
in the boundary layer, but 
rarely higher in the atmo-
sphere.  Why not? (1) The 
ageostrophic component of 
wind (wind from the East 
in this example) moves air 
mass, and changes the pres-
sure gradient.  (2) Friction 
damps the oscillation to-
ward a steady wind.
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 Define Utan ≡ U and Vtan ≡ V as the components 
of gradient wind, with a total gradient wind speed of 
Mtan = [Utan

2 + Vtan
2]1/2.  One solution to eq. (10.32) 

is 
    

M G
M
f Rc

tan
tan
·

= ±
2  (10.33)

where Mtan is the gradient-wind speed, and where 
the negative sign is used for flow around low pres-
sure centers, and the positive sign for highs.  This 
solution demonstrates that wind is “slow around 
lows” (Fig. 10.13), meaning slower than geostrophic 
G.  However, the solution is implicit because the de-
sired wind Mtan is on both sides of the equal sign.

Solved Example
 What radius of curvature causes the gradient wind to equal the geostrophic wind?

Solution
Given:   Mtan = G            Find:     R = ? km

Use eq. (10.33), with Mtan = G:           G = G ± G2/( fc·R)
This is a valid equality  G = G  only when the last term in eq. (10.33) approaches zero; i.e.,  in the limit of  R = ∞  .

Check:  Eq. (10.33) still balances in this limit.   Discussion:  Infinite radius of curvature is a straight line, which (in 
the absence of any other forces such as turbulent drag) is the condition for geostrophic wind.

Figure 10.11
Forces (dark arrows) that cause the gradient wind (solid grey 
arrow, Mtan) to be slower than geostrophic (hollow grey arrow) 
when circling around a low-pressure center (called a cyclone in 
the N. Hem.).  The short white arrow with black outline shows 
centripetal force (the imbalance between the other two forces).  
Centripetal force pulls the air parcel (grey sphere) inward to 
force the wind direction to change as needed for the wind to turn 
along a circular path.

Figure 10.12
Forces (dark arrows) that cause the gradient wind (solid grey 
arrow, Mtan) to be faster than geostrophic (hollow grey arrow) 
for an air parcel (grey sphere) circling around a high-pressure 
center (called an anticyclone in the N. Hemisphere).

Figure 10.13
Geostrophic wind G and gradient wind Mtan around a low pres-
sure center in the Northern Hemisphere.
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 Solving the quadratic equation (10.33) for the cy-
clonic flow (around a low-pressure center) yields 
the gradient wind Mtan: 

 M f R
G

f Rc
c

tan . · · ·
·
·

= − + +








0 5 1 1

4
 •(10.34a)

For anticyclonic flow (around a high-pressure cen-
ter):

 M f R
G

f Rc
c

tan . · · ·
·
·

= − −








0 5 1 1

4  •(10.34b)

 A “curvature” Rossby number (Roc) can be de-
fined that uses the radius of curvature (R) as the rel-
evant length scale:

    Ro
G

f Rc
c

=
·  (10.35)

[Neither R nor Roc are the “Rossby deformation ra-
dius” (see eq. 10.70, and the Airmasses, Fronts, and 
Extratropical Cyclones chapters).]  Small values of 
the Rossby number indicate flow that is nearly in 
geostrophic balance.
 The cyclonic gradient wind (around a low) is:

  M
G
Ro

Ro
c

ctan
/

·
· ·= − + +( )
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
2

1 1 4 1 2 (10.36a)

and anticyclonic gradient wind (around a high) is:

  M
G
Ro

Ro
c

ctan
/

·
· ·= − −( )
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
2

1 1 4 1 2 (10.36b)

where G is the geostrophic wind.
 For high-pressure centers, steady-state physical 
(non-imaginary) solutions exist only for Roc ≤ 1/4 .  
Thus, around anticyclones, isobars cannot be both 
closely spaced and sharply curved.  In other words, 
the pressure cannot decrease rapidly away from 
high centers. There is no analogous restriction on 
cyclones, because any value of Roc is possible.  Thus, 
pressure gradients and winds must be gentle in 
highs, but can be vigorous near low centers (Figs. 
10.14 and 10.15).
 By combining the definition of the Rossby num-
ber with that for geostrophic wind, and setting Roc = 
1/4, we find that the maximum horizontal variations 
of pressure P or height z near anticyclones are:

    z z f R gc c= − ( ) ( )2 2 8· / · •(10.37a)

    P P f Rc c= − ( )ρ· · /2 2 8 •(10.37b)

Solved Example
 If the geostrophic wind around a low is 10 m/s, then 
what is the gradient wind speed, given  fc = 10–4 s–1  
and a radius of curvature of 500 km?  Also, what is the 
curvature Rossby number?

Solution
Given:  G = 10 m/s,   R = 500 km,   fc = 10–4 s–1   
Find:   Mtan = ? m/s,  Roc = ? (dimensionless)

Use eq. (10.34a)

 

M

m s

tan . ·( )·( )·

·( / )

=

− + +

− −0 5 10 500000

1 1
4 10

4 s m1

(( )·( )10 5000004− −




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



s m1

     = 8.54 m/s
Use eq. (10.35):

   Roc =
×− −

( )

( )·( )

10

10 5 104 5
m/s

s m1      = 0.2 

Check:  Units OK.  Physics OK.
Discussion:  The small Rossby number indicates that 
the flow is in geostrophic balance.  The gradient wind 
is indeed slower than geostrophic around this low.

Figure 10.14
Variation of surface pressure across an anticyclone (H) and cy-
clone (L), showing that the curve can have steep pressure gra-
dients near the low and a cusp at the low, but not at the high.  
Arbitrary center pressures of 103 kPa and 97 kPa were chosen to 
illustrate the anticyclone and cyclone, respectively.
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where zc and Pc are the reference height or pressure 
at the center of the anticyclone, fc is the Coriolis pa-
rameter, |g| is gravitational acceleration magnitude, 
ρ is air density, and R is distance from the center of 
the anticyclone (Fig. 10.14). 
 Figs. 10.14 and 10.15 show that pressure gradi-
ents, and thus the geostrophic wind, can be large 
near low centers.  However, pressure gradients, and 
thus the geostrophic wind, must be small near high 
centers.  This difference in geostrophic wind speed 
G between lows and highs is sketched in Fig. 10.16.  
The slowdown of gradient wind Mtan (relative to 
geostrophic) around lows, and the speedup of gra-
dient wind (relative to geostrophic) around highs is 
also plotted in Fig. 10.16.  The net result is that gradi-
ent winds, and even boundary-layer gradient winds 
MBLG (described later in this chapter), are usually 
stronger (in an absolute sense) around lows than 
highs.  For this reason, low-pressure centers are of-
ten windy.  

Boundary-Layer Wind
 Turbulent drag in the boundary layer slows the 
wind below the geostrophic value, and turns the 
wind to point at a small angle (α) across the isobars 
toward low pressure (Fig. 10.17).  For flow along 
straight isobars, the steady-state equations of mo-
tion become:

  0
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∆
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f V w
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i
 (10.38a)

  0
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∆
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P
y

f U w
V
zc T

i
 (10.38b)

Figure 10.15
Sea-level pressure (contoured every 2 mb= 0.2 kPa), for 00 UTC 
on 24 Nov 1998.  Notice the tight packing of isobars around 
lows, but looser spacing near high-pressure centers.

Figure 10.17
Balance of forces (black arrows) creating a boundary-layer wind 
(MBL, solid grey arrow) that is slower than geostrophic (G, hol-
low grey arrow).  The grey sphere represents an air parcel.  Thin 
black lines are isobars.  L and H are low and high-pressure cen-
ters.

Figure 10.16
Relative magnitudes of different wind speeds around low- and 
high-pressure centers.  G = geostrophic wind, Mtan = gradient 
wind speed, MBLG = boundary-layer gradient wind speed.  G is 
smaller in highs than in lows, because it is not physically pos-
sible to have strong pressure gradients to drive strong steady-
state winds at high centers.
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Namely, the only forces acting for this special case 
are pressure gradient, Coriolis, and turbulent drag 
(Fig. 10.17).
 Define UBL = U and VBL = V as components of the 
boundary-layer wind.  An implicit solution of eqs. 
(10.38) is:
    U U

w V
f zABL g

T ABL

c i
= −

·
·

 (10.39a)

    V V
w U

f zABL g
T ABL

c i
= +

·
·

 (10.39b)

where (Ug, Vg) are geostrophic wind components, fc 
is Coriolis parameter, zi is ABL depth, and wT is the 
turbulent transport velocity.  
 Eqs. (10.39) can be solved by iteration (guess VBL 
and plug into the first equation, solve for UBL and 
plug into second equation, solve for VBL and repeat 
the process).  The magnitude of the boundary-layer 
wind is:
             MBL =  [U2

BL + V2
BL ]1/2 (10.40)

 If the boundary layer is statically neutral with 
strong wind shear, then wT = CD·MBL, where CD is 
the drag coefficient (see eq. 10.21).  An approximate 
explicit solution for the wind at most altitudes in the 
boundary layer is:
     •(10.41a)
U a U U a V a V GABL g g g g≈ − − −( . · · )· ( . · · )· · ·1 0 35 1 0 5

     •(10.41b)
V a U a G U a V VABL g g g g≈ − + −( . · · )· · · ( . · · )·1 0 5 1 0 35

for  a·G < 1 , where  a = CD/( fc·zi) and G is the 
geostrophic wind speed.  If this condition is not met, 
or if no reasonable solution can be found using eqs. 
(10.41), then use the iterative approach described in 
the next section, but with the centrifugal terms set to 
zero.  Eqs. (10.41) do not apply to the surface layer 
(bottom 10% of the neutral boundary layer).  
 For a statically unstable boundary layer with 
light winds, use wT = bD·wB (see eq. 10.22).  An exact 
explicit solution for the winds at most altitudes in 
the boundary layer is:

   U c U c VABL g g= −2 1·[ · ] •(10.42a)

   V c V c UABL g g= +2 1·[ · ] •(10.42b)

where  c
b w

f z
D B

c i
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·
·  , and  c
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2

1
2

1

1
=

+[ ]
  .  

 Again, this solution does not apply to the sur-
face layer (bottom 5% of convective boundary lay-
er).  See the “Forces” section earlier in this chapter 
for definitions of the factors in c1. 

Solved Example
 Find the boundary-layer winds given Ug = 10 m/s, 
Vg = 0, zi = 1 km, CD = 0.002, and fc = 10–4 s–1.  Also, 
what angle do the winds cross the isobars?  This is a 
statically neutral boundary layer.

Solution
Given: (see above)
Find:  UBL =? m/s,  VBL =? m/s,  MBL =? m/s,  α = ? °
Use eqs. (10.41):  with G = (Ug

2 + Vg
2)1/2 = 10 m/s

 
a 

.

( )·( )
.  = =− −

0 003

10 1500
0 024 s m

s/m1

Check: a·G = (0.02s/m)·(10 m/s) =0.2   ( is < 1.  Good.)
 UBL=[1–0.35·(0.02s/m)·(10m/s)]·(10m/s) ≈ 9.3 m/s 
 VBL=[1–0.5·(0.02s/m)·(10m/s)]·
  (0.02s/m)·(10m/s)·(10m/s)   ≈   1.8 m/s 

 M U VABL ABL ABL= + = +2 2 2 213 4 3 8. .= 9.47 m/s 

The geostrophic wind is parallel to the isobars.
The angle between BL wind and geostrophic is
 α =tan–1(VBL/UBL) = tan–1(1.8/9.3)  =  11° .

Check:  Units OK.  Physics OK.
Discussion:  The boundary-layer wind speed is in-
deed slower than geostrophic (9.47 vs. 10 m/s), but only 
slightly slower because the drag coefficient for this 
example was very small.  Also, it crosses the isobars 
slightly toward low pressure.  (The geostrophic wind 
toward the east means low pressure is to the north. )

Solved Example
 Find the boundary layer winds given Ug = 10 m/s, 
Vg = 0, zi = 1 km, wB = 45 m/s,  bD = 1.83x10–3 ,  and fc 
= 10–4 s–1.  Also, at what angle does the wind cross the 
isobars?  This is a statically unstable boundary layer.

Solution
Given:  (see above, for a convective BL)
Find:  UBL = ? m/s,  VBL = ? m/s,  MBL = ? m/s,  α = ?°

Use eqs. (10.42):

 c1

3

4
1 83 10 50

10 1500
=

× −

− −
( . )·( )

( )·( )

m/s

s m1 = 0.824 (dimensionless)

  c2 = 1/[1+(0.8242)2] = 0.60 (dimensionless)
 UBL = 0.6·[(10m/s) – 0 ]             = 6.0 m/s 
 VBL = 0.6·[0 + (0.824)·(10m/s)]  = 4.94 m/s 
Use eq. (10.40):
 MBL =  [U2

BL + V2
BL ]1/2            =  7.77 m/s 

  α =tan–1(VBL/UBL) = tan–1(4.94/6.0)  = 39.5° 

Check:  Units OK.  Physics OK.
Discussion:  As before, the boundary layer winds are 
subgeostrophic, and cross the isobars toward low pres-
sure.  Turbulent drag has similar effects, regardless of 
whether the turbulence is generated mechanically by 
wind shear, or by buoyant rising thermals.
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 Thus, for both neutral and unstable static stabili-
ties, boundary-layer winds (for most mid-boundary-
layer altitudes) cross the isobars at a small angle (α) 
toward low pressure.  This cross-isobaric flow oc-
curs for both straight and curved isobars. 

Boundary-Layer Gradient (BLG) Wind
 In regions of curved isobars at the bottom of 
cyclones and anticyclones, drag force exists in the 
boundary layer (BL) in addition to pressure gradi-
ent and Coriolis force.  The imbalance (Fnet) of these 
forces creates a centripetal force that causes the air 
to spiral in towards low-pressure centers (Fig. 10.18) 
and spiral out from high-pressure centers.  Fig. 10.1 
shows a sketch of the BL gradient winds in the N. 
Hemisphere, and the associated isobars.
 Assume steady state, neglect advection, and re-
quire an imbalance of forces equal to the centrifugal 
force, to reduce the equations of motion to:
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 (10.43b)
  } } } }

pressure
gradient

Coriolis
turbulent

drag
centrifugal

 Without actually solving these equations, we can 
anticipate the following from our previous under-
standing of geostrophic, gradient, and boundary-
layer winds.  Boundary-layer gradient (BLG) wind 
speed is slower than the gradient wind speed due 
to the drag.  The BLG winds flow counterclockwise 
around lows in the N. Hemisphere, and clockwise 
around highs.  Instead of blowing parallel to the 
curved isobars like the gradient wind, BLG winds 
cross the isobars at a small angle (α, tens of degrees) 
toward low pressure (Fig. 10.19).
 The turbulent drag term is different for highs and 
lows.  Winds are strong around lows and skies are 
often overcast, hence the transport velocity is best 
represented by the statically neutral parameteriza-
tion:

 wT = CD · M  =  CD · [ U2 + V2 ]1/2 (10.21 again)

which adds even more nonlinearity to eqs. (10.43).  
 In highs, winds are light and skies are clear, sug-
gesting that transport velocity should be given by 
the statically unstable parameterization during day-
time by:

Figure 10.19
Tangential (U) and radial (V) components of the BLG wind in 
the N. Hemisphere, for that one vector south of the Low.

Figure 10.18
Imbalance of forces (black arrows) yield a net centripetal force 
(Fnet) that causes the boundary layer gradient wind (MBLG, sol-
id grey arrow) to be slower than both the gradient wind (Mtan) 
and geostrophic wind (G).  The resulting air-parcel path crosses 
the isobars at a small angle α toward low pressure.
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    wT = bD · wB  (10.22 again)

where wB is not a function of wind speed.  For stati-
cally stable conditions at night in fair weather, steady 
state is unlikely, so eqs. (10.43) are invalid. 
 While the equations of motion for geostrophic 
and gradient winds were simple enough to allow an 
analytical solution, and we could devise an approxi-
mate analytical solution for the BL wind, we are not 
so lucky with the BLG wind.  The set of coupled 
equations (10.43) are nonlinear and nasty to solve.  
 Nonetheless, we can numerically iterate towards 
the answer by including the tendency term on the 
LHS of each equation.  For example, LHS = ∆U/∆t = 
[U(t+∆t) – U(t)]/∆t.  Also, rewrite eqs. (10.43) in cylin-
drical coordinates, letting U be the tangential com-
ponent, and V be the radial component (Fig. 10.19).   
Use geostrophic wind G as a surrogate for the radial 
pressure gradient.   
 For BLG winds around a low in the N. Hemi-
sphere (i.e.,  s = +1), equations (10.43) can be rewrit-
ten as the following set of coupled equations, which 
is valid day or night: 
     
    M = ( U2 + V2 )1/2 (1.1 again)

     (10.44a)
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where (U, V) represent (tangential, radial) parts for 
the wind vector south of the low center.  

Solved Example
 Find the BLG winds south of a low pressure center 
in the N. Hemisphere, given G = 20 m/s at radius R = 
500 km from the low center, zi = 1 km, CD = 0.01, and fc 
= 10–4 s–1.  Also, find the speed.

Solution
Given:  (see above)
Find: UBLG = ? m/s,   VBLG = ? m/s,   MBLG = ? m/s

Use eqs. (1.1) and (10.44) in a spreadsheet.  Set the time 
step to ∆t = 1 h.  Choose U = 0 and V = 0 as the first 
guess.  Make 20 iterations (see the Focus box).  

 

UBLG = 8.51 m/s,  VBLG = 8.09 m/s,  MBLG = 11.74 m/s, 
where (UBLG, VBLG) are (tangential, radial) parts.

Check: Units OK. Physics OK. Check that the com-
puted wind approaches the: (1) geostrophic wind as R 
approaches ∞, with CD = 0;  (2)  gradient wind when CD 
= 0;  (3) boundary-layer wind when R approaches ∞.   
 I performed these checks using a modified spread-
sheet that relaxed the results using a weighted aver-
age of new and previous winds, and found:  (1) for 
geostrophic: UBLG = G = 20 m/s,  VBLG = 0; (2) for gradi-
ent: UBLG = 15.31 m/s, VBLG = 0; and (3) for BL: UBLG = 
7.81 m/s, VBLG = 9.76 m/s.  This BL solution is the exact 
solution; it is better than approximate eqs. (10.41).
Discussion:  The solution converges toward the BLG 
wind, as if an air 
parcel started from 
rest and began accel-
erating.  The Fig. at 
right used ∆t = 1000 
s (not 1 h).  Starting 
at zero wind speed, 
each dot shows the 
wind forecast for the 
next time step in the 
iteration. 

FocUs • solution by iteration

 Equations (10.44) are difficult to solve analytically, 
but we can iterate as an alternative way to solve for 
the BLG wind components.   To use this approach:

 (1) Make a first guess that (U, V) = (0, 0).
 (2) Plug in these values everywhere that U, U(t),  
  V, or V(t) appears in eqs. (1.1) and (10.44).
 (3) Solve eqs. (10.44) for the new values of 
  [U(t+∆t), V(t+∆t)].  
 (4) Repeat steps 2 & 3, but using the new winds.
 (5) Continue until the [U(t+∆t), V(t+∆t)] wind 
  components converge to steady values, which 
  by definition are the (UBLG, VBLG) components 
  that we want. 

Iterative approaches are tedious when done on a hand 
calculator, so use a spreadsheet or computer program 
instead, such as was done in the solved example.
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 Similar equations can be derived for convective 
boundary layers in high-pressure regions.
 You can use the iterative method described in the 
Focus box to solve equations (10.44).  In the solved 
example, notice that the spreadsheet iterations do 
not proceed directly to the final solution, but spiral 
toward it.  This spiral is called a damped inertial 
oscillation.  
 Equations (10.44) are also valid for unsteady (time 
varying) solutions, such as at night.  At night when 
drag is weak, the winds may never reach steady state, 
and may continue as undamped or weakly-damped 
inertial oscillations (see a previous Focus Box on 
Approach to Geostrophy).   Such oscillations can tem-
porarily cause winds to be greater than geostrophic 
in regions of straight isobars, or greater than gradi-
ent in regions of curved isobars.  This is one reason 
for the supergeostrophic (faster than geostrophic) 
nocturnal jet, which will be covered in the Atmo-
spheric Boundary Layer chapter.

cyclostrophic Wind
 In intense vortices, strong winds rotate around a 
very tight circle.  Winds in tornadoes are about 100 
m/s, and in water spouts are about 50 m/s.  As the 
tornado strengthens and tangential winds increase, 
centrifugal force increases much more rapidly than 
Coriolis force.  Centrifugal force quickly becomes 
the dominant force that balances pressure-gradient 
force (Fig. 10.20).  Thus, a steady-state rotating wind 
is reached at much slower speeds than the gradient 
wind speed.
 For steady state winds, the equations of motion 
reduce to: 
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gradient

centrifugal

 Because of the cylindrical nature of these flows 
as they rotate around intense low-pressure cen-
ters, it is easier to write and solve the equations for 
cyclostrophic wind Mcs  in cylindrical form:

    
M

R P
Rcs = ∆

∆ρ
·

 (10.46)

where R is radial distance outward from the center 
of rotation, ∆P/∆R is the local radial pressure gradi-
ent, and  Mcs is the tangential speed.

Figure 10.20
Around tornadoes, pressure gradient force is so strong that it 
greatly exceeds all other forces.  The net force (Fnet) pulls the air 
around the tight circle at the cyclostrophic wind speed (Mcs).  

Solved Example
 A 10 m radius waterspout has a tangential velocity 
of 45 m/s.  What is the radial pressure gradient?

Solution
Given:   Mcs = 45 m/s,   R = 10 m.
Find:  ∆P/∆R = ? kPa/m.

Assume cyclostrophic wind, and ρ =  1 kg/m3.
Rearrange eq. (10.46):
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3

 ∆P/∆R = 202.5 kg·m–1·s–2 / m        = 0.2 kPa/m.

Check:  Units OK.  Physics OK.
Discussion:  This is 2 kPa across the 10 m waterspout 
radius, which is 1000 times greater than typical synop-
tic-scale pressure gradients on weather maps.
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 Cyclostrophic winds never occur around high 
pressure centers, because the strong pressure gra-
dients needed to drive such winds are not possible.  
Around lows, cyclostrophic winds can turn either 
counterclockwise or clockwise in either hemisphere, 
because Coriolis force is not a factor.  

inertial Wind
 Steady-state inertial motion results from a bal-
ance of Coriolis and centrifugal forces:  

    0
2

= +f M
M

Rc i
i·  (10.47)

where Mi is inertial wind speed, fc is the Coriolis pa-
rameter, and R is the radius of curvature.  Since both 
of these forces depend on wind speed, the inertial 
wind cannot start itself from zero.  It can occur only 
after some additional force first causes the wind to 
blow, and then that extra force disappears.  
 The inertial wind coasts around a circular path 
of radius R, 

    R
M
f

i

c
= −  (10.48)

where the negative sign implies anticyclonic rotation 
(Fig. 10.21).  The time period needed for this iner-
tial oscillation to complete one circuit is P = 2π/fc, 
which is half of a pendulum day (see Approach to 
Geostrophy Focus Box earlier in this chapter).   
 Although rarely observed in the atmosphere, 
inertial oscillations are frequently observed in the 
ocean.  This can occur where wind stress on the 
ocean surface creates an ocean current, and then 
after the wind dies the current coasts in an inertial 
oscillation.

antitriptic Wind
 A steady-state antitriptic wind Ma could result 
from a balance of pressure-gradient force and tur-
bulent drag:
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where ∆P is the pressure change across a distance 
∆d perpendicular to the isobars, fc is the Coriolis pa-
rameter, wT is the turbulent transport velocity, and zi 
is boundary-layer depth.  
 This wind blows perpendicular to the isobars 
(Fig. 10.22), directly from high to low pressure:

    M
z f G

wa
i c

T
=

· ·  (10.50)

Figure 10.21
Imbalance of forces (F, black arrows) on an air parcel (grey ball), 
creating an anticyclonic inertial wind Mi, grey arrow).  R is 
radius of curvature, and FCF is Coriolis force.

Solved Example
 For an inertial ocean current of 5 m/s, find the ra-
dius of curvature and time period to complete one cir-
cuit.  Assume a latitude where fc = 10–4 s–1.  

Solution
Given:  Mi = 5 m/s,      fc = 10–4 s–1.
Find:  R = ? km,   P = ? h

Use eq. (10.48):  R = –(5 m/s) / (10–4 s–1)  = –50 km  
Use  P = 2π/fc  =  62832 s  =  17.45 h  

Check:  Units OK.  Magnitudes OK.
Discussion:  The tracks of drifting buoys in the ocean 
are often cycloidal, which is the superposition of a 
circular inertial oscillation and a mean current that 
gradually moves the whole circle.

Figure 10.22
Balance of forces (F, black arrows) that create the antitriptic 
wind Ma (grey arrow).  G is the theoretical geostrophic wind.  
FTD is turbulent drag, and FPG is pressure-gradient force.
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For free-convective boundary layers, wT = bD·wB is 
not a function of wind speed, so Ma is proportional 
to G.  However, for windy forced-convection bound-
ary layers, wT = CD·Ma, so solving for Ma shows it to 
be proportional to the square root of G.
 This wind would be found in the boundary layer, 
and occurs as an along-valley component of “long 
gap” winds (see the Local Winds chapter).  It is also 
sometimes thought to be relevant for thunderstorm 
cold-air outflow and for steady sea breezes.  How-
ever, in most other situations, Coriolis force should 
not be neglected; thus, the boundary-layer wind and 
BL Gradient winds are much better representations 
of nature than the antitriptic wind.  

summary of horizontal Winds
 Table 10-5 summarizes the idealized horizontal 
winds that were discussed earlier in this chapter. 
 On real weather maps such as Fig. 10.23, isobars 
or height contours have complex shapes.  In some 
regions the height contours are straight (suggesting 
that actual winds should nearly equal geostrophic 
or boundary-layer winds), while in other regions the 
height contours are curved (suggesting gradient or 
boundary-layer gradient winds).  Also, as air parcels 
move between straight and curved regions, they are 
sometimes not quite in equilibrium.  Nonetheless, 
when studying weather maps you can quickly esti-
mate the winds using the summary table.
  

Figure 10.23
Upper-air 30 kPa height chart valid at 12 UTC on 9 July 99.  
Shading indicates isotachs in the jet stream, where light grey 
denotes roughly 25 m/s or greater winds, and darker shading 
is roughly 50 m/s or greater.  Thick lines are height contours.  
Faster winds occur where contours are packed. [Adapted from a 
US Navy Fleet Numerical Meteor. and Ocean. Ctr. chart.]

FocUs  •  the rossby number

 The Rossby number (Ro) is a dimensionless ratio 
defined by

  Ro
M
f Lc

=
·

         or         Ro
M

f Rc
=

·

where M is wind speed, fc is the Coriolis parameter, 
L is a characteristic length scale, and R is radius of 
curvature.  
 In the equations of motion, suppose that advection 
terms such as U·∆U/∆x are order of magnitude M2/L, 
and Coriolis terms are of order fc·M.  Then the Rossby 
number is like the ratio of advection to Coriolis terms:  
(M2/L) / ( fc·M) = M/( fc·L) = Ro.  Or, we could consider 
the Rossby number as the ratio of centrifugal (order of 
M2/R) to Coriolis terms, yielding  M/( fc·R) = Ro.  
 Use the Rossby number as follows.  If Ro < 1, then 
Coriolis force is a dominant force, and the flow tends 
to become geostrophic (or gradient, for curved flow).  
If Ro > 1, then the flow tends not to be geostrophic.  
 For example, a midlatitude cyclone (low-pressure 
system) has approximately M = 10 m/s, fc = 10–4 s–1, 
and R = 1000 km, which gives  Ro = 0.1 .  Hence, mid-
latitude cyclones tend to adjust toward geostrophic 
balance, because Ro < 1.  In contrast, a tornado has 
roughly M = 50 m/s,  fc = 10–4 s–1, and R = 50 m, which 
gives  Ro = 10,000, which is so much greater than one 
that geostrophic balance is not relevant.  

Solved Example
 In a 1 km thick convective boundary layer at a loca-
tion where fc = 10–4 s–1, the geostrophic wind is 5 m/s.   
The turbulent transport velocity is 0.02 m/s.  Find the 
antitriptic wind speed.

Solution
Given: G = 5 m/s,    zi = 1000 m,    fc = 10–4 s–1, 
  wT = 0.02 m/s
Find: Ma = ?  m/s

Use eq. (10.50):
 Ma = (1000m)·(10–4 s–1)·(5m/s) / (0.2 m/s)
  = 25 m/s  

Check:  Magnitude seems too large.  Units OK.
Discussion:  Eq. (10.50) can give winds of Ma > G for 
many convective conditions, for which case Coriolis 
force would be expected to be large enough that it 
should not be neglected.  Thus, antitriptic winds are 
unphysical.  However, for forced-convective bound-
ary layers where drag is proportional to wind speed 
squared, reasonable solutions are possible.
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 To be accurate, an additional vertical advection 
term should be included in the right-hand side of 
each equation.  Namely, –W·∆U/∆z in the forecast 
equation for U wind, and –W·∆V/∆z in the equation 
for V wind.  For example, fast jet-stream horizontal 
winds aloft can be advected down toward the sur-
face, causing fast, damaging surface winds.  Simi-
larly, slow boundary-layer horizontal winds can be 
advected upward to spread the effects of surface 
drag higher into the atmosphere.
 A centrifugal term could also be added for winds 
associated with curved isobars, which is an artifice 
to account for the continual changing of wind di-
rection caused by an imbalance of the other forces 
(where the imbalance is the centripetal force).
 The third term on the right is called the 
geostrophic departure term.  The wind difference 
is also called the ageostrophic wind (Uag, Vag):

    Uag = U – Ug •(10.52a)

    Vag = V – Vg •(10.52b)

horizontaL motion

equations of motion — revisited
 The geostrophic wind can be used as a surrogate 
for the pressure-gradient force, based on the defini-
tions in eqs. (10.26).  With this substitution, we can 
then group this term with the Coriolis term in the 
equations of horizontal motion (10.23): 

      •(10.51a)

   
∆
∆

= − ∆
∆

− ∆
∆

+ −( ) −U
t

U
U
x

V
U
y

f V V w
U
zc g T

i
      ·   ·

     •(10.51b)

   
∆
∆

= − ∆
∆

− ∆
∆

− −( ) −V
t

U
V
x

V
V
y

f U U w
V
zc g T

i
      ·   ·

} } } } }

tendency
horizontal 
advection

Coriolis
pressure
gradient

turbulent
drag

Table 10-5.  Summary of horizontal winds**.

Item
Name of 

Wind
Forces Direction Magnitude Where Observed

1 geostrophic pressure-gradient, 
Coriolis

parallel to straight 
isobars with Low pres-
sure to the wind’s left*

faster where isobars 
are closer together.

 
G

f
P
dc

= 1
ρ·

·
∆
∆

aloft in regions 
where isobars are 

nearly straight

2 gradient
pressure-gradient,

Coriolis, 
centrifugal

similar to geostrophic 
wind, but following 

curved isobars.  Clock-
wise* around Highs, 

counterclockwise* 
around Lows.

slower than 
geostrophic around 

Lows, faster than 
geostrophic around 

Highs

aloft in regions 
where isobars are 

curved

3
boundary

layer

pressure-gradient,
Coriolis, 

drag

similar to geostrophic 
wind, but crosses 

isobars at small angle 
toward Low pressure

slower than 
geostrophic (i.e., 

subgeostrophic)

near the ground 
in regions where 
isobars are nearly 

straight

4
boundary-

layer
gradient

pressure-gradient,
Coriolis, 

drag, 
centrifugal

similar to gradient 
wind, but crosses 

isobars at small angle 
toward Low pressure

slower than gradient 
wind speed

near the ground in 
regions where iso-

bars are curved

5 cyclostrophic pressure-gradient,
centrifugal

either clockwise or 
counterclockwise 

around strong vortices 
of small diameter

stronger for lower 
pressure in the vortex 

center

tornadoes, water-
spouts (& sometimes 

in the eye-wall of 
hurricanes)

6 inertial Coriolis, 
centrifugal

anticyclonic circular 
rotation

coasts at constant 
speed equal to its 

initial speed

ocean-surface 
currents

* For Northern Hemisphere.  Direction is opposite in Southern Hemisphere.   ** Antitriptic winds are unphysical; not listed here.
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scales of horizontal motion
 In the atmosphere, motions of many scales are 
superimposed: from small turbulent eddies through 
thunderstorms and cyclones to large planetary-scale 
circulations such as the jet stream.  Scales of hori-
zontal motion are classified in Table 10-6. 
 Small atmospheric phenomena of horizontal 
dimension less than about 10 km are frequently 
isotropic; namely, their vertical and horizontal di-
mensions are roughly equal.  Horizontally-larger 
phenomena are somewhat pancake-like, because the 
vertical dimension is generally limited by the depth 
of the troposphere (about 11 km). 
 Fig. 10.24 shows that time scales τ and horizontal 
length scales λ of many meteorological phenomena 
early follow a straight line on a log-log plot.  This 
implies that
           τ/τo = (λ/λo)b (10.53)

where τo  ≈ 10–3 h, λo ≈ 10–3 km, and b ≈ 7/8.  For ex-
ample, microscale turbulence about 1 m in diameter 
might last about a 1 s.  Boundary-layer thermals of 
diameter 1 km have circulation lifetimes of about 25 
min.  Thunderstorms of size 10 km might last a few 
hours.  Cyclones of size 1000 km might last a week.
 In the next several chapters, we cover weather 
phenomena from largest to smallest horiz. scales:
• Chapter 11     Global Circulation  (planetary)
• Chapter 12     Airmasses and Fronts  (synoptic)
• Chapter 13     Extratropical Cyclones  (synoptic)
• Chapter 14     Thunderstorms  (meso β)
• Chapter 15     Thunderstorm Hazards  (meso γ)
• Chapter 16     Hurricanes  (meso α & β)
• Chapter 17     Local Winds  (meso β & γ)
• Chapter 18     Atm. Boundary Layers  (microscale)
Although hurricanes are larger than thunderstorms, 
we cover thunderstorms first because they are the 
building blocks of hurricanes.  Similarly, midlati-
tude cyclones often contain fronts, so fronts are cov-
ered before extratropical cyclones.

VerticaL Forces anD motion

 Forces acting in the vertical can cause or change 
vertical velocities, according to Newton’s Second 
Law.  In an Eulerian framework, the vertical com-
ponent of the equations of motion is:
     (10.54)
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“The book of nature is written in the language of 
mathematics.” 
 – Galileo, as paraphrased by Alex Stone, 2005.  Dis-
cover, 26, p77.

Figure 10.24
Typical time and spatial scales of meteorological phenomena.
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where the left hand side is the vertical acceleration, 
and the right hand side lists the vertical forces per 
mass.  (U, V, W) are the three Cartesian velocity 
components in the (x, y, z) directions, P is pressure, 
ρ is air density, t is time, Fz  TD is the turbulent drag 
force in the vertical, and mass is m.  Gravitational 
acceleration magnitude is |g| = 9.8 m·s–2.  Coriolis 
force is negligible in the vertical (see the Focus box 
on Coriolis Force in 3-D, earlier in this chapter), and is 
not included in the equation above.
 Recall from Chapter 1 that our atmosphere has 
an extremely large pressure gradient in the verti-
cal, which is almost completely balanced by gravity 
(Fig. 10.25).  Also, there is a large density gradient 
in the vertical.  We can define these large terms as a 
mean background state or a reference state of 
the atmosphere.  Use the overbar over variables to 
indicate their average background state.  Define this 
background state such that it is exactly in hydro-
static balance (see Chapter 1):

    ∆
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·
P
z

g= −ρ  (10.55)

 However, small deviations in density and pres-
sure from the background state can drive important 
non-hydrostatic vertical motions, such as in ther-
mals and thunderstorms.  To discern these effects, 
we must first remove the background state from 
the full vertical equation of motion.  Focus on the 
pressure-gradient and gravity terms of eq. (10.54), 
rewritten here as:
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 Split the total density ρ into a background (ρ ρ ρ= + ′) 
and deviation (ρ ρ ρ= + ′ ) part: ρ ρ ρ= + ′  .  Do the same for 
pressure: P P P= + ' .  The terms above become:
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The first and third terms in square brackets in eq. 
(10.57) cancel out, due to hydrostatic balance (eq. 
10.55) of the background state. 
 Next, a Boussinesq approximation is made 
that  ′ + ′( ) ≈ ′( )ρ ρ ρ ρ ρg g/ / · , which implies that density 
deviations are important in the gravity term, but 
negligible for all other terms.  This is reasonable be-
cause ′ <<ρ ρ .  In the Stability chapter, it was shown 
that density deviations can be described by virtual 
temperature Tv deviations (with a sign change be-
cause low density corresponds to high tempera-
ture):

Solved Example
 An updraft of 8 m/s exists 2 km west of your loca-
tion, and there is a west wind of 5 m/s.  At your loca-
tion there is zero vertical velocity, but the air is 3°C 
warmer than the surrounding environment of 25°C.  
What is the initial vertical acceleration of the air over 
your location?

Solution
Given: ∆θ =  3°C,  Te = 273+25 = 298 K,  U= 5m/s
  ∆W/∆x= (8m/s – 0) / (–2,000m – 0)
Assume: V = 0 .  Drag = 0 initially, given W = 0.
 Dry air, thus Tv = T.
Find:  ∆W/∆t = ? m·s–2  

Use eq. (10.59):   ∆
∆

∆
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W
t
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x T

g
p e

e
= − +

−θ θ
·

= –(5 m/s)·(–8m·s–1/2,000m)+(3/298)·(9.8m·s–2)
 = 0.020 + 0.099 = 0.119 m·s–2  

Check:  Units OK.  Physics OK.
Discussion:  Extrapolated over a minute, this initial 
acceleration gives W = 7.1 m/s.  However, this vertical 
velocity would not be achieved because as soon as the 
velocity is nonzero, the drag term also becomes non-
zero and tends to slow the vertical acceleration.

Figure 10.25
Mean background state, showing variations with height z of (a) 
atmospheric pressure P P P= + ' and (b) density ρ ρ ρ= + ′ (from Chapter 1).

(a)

(b)
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where subscript p denotes the air parcel, and sub-
script e is for the environment, and g’ is called the 
reduced gravity.  Tve in the denominator must be 
in Kelvin. 
 Plugging this back into eq. (10.54) gives:

     •(10.59)
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Terms from this equation will be used in the Lo-
cal Winds and Thunderstorms chapters, to explain 
strong vertical velocities.
 Turbulent drag is the resistance of a vertically 
moving air parcel against other surrounding (sta-
tionary environmental) air.  This is a completely dif-
ferent effect than drag against the Earth’s surface, 
and is not described by the same drag equations.  
The nature of Fz TD  is considered in the chapter 
on Air Pollution Dispersion, as it affects the rise of 
smoke-stack plumes.  Air with no vertical movement 
relative to its environment has no drag.

mass conserVation

 Barring any nuclear reactions, air molecules are 
not converted into energy, and air mass is conserved.  
In an Eulerian framework, mass flowing into a fixed 
volume minus the mass flowing out gives the change 
of mass within the volume (Fig. 10.26).  The equation 
describing this mass balance is called the continu-
ity equation.  The name “continuity” is based on 
the observation that gases such as air tend to spread  
smoothly and evenly within a volume.

continuity equation
 Recall that mass within a unit volume is defined 
as density, ρ.  The mass budget is:
     (10.60)
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which is also called the continuity equation.  The 
terms in curly braces { } describe advection.  Eq. 
(10.60) can be rearranged (using calculus) to be:

Solved Example
 Just before a tornado strikes your garage, the air 
density inside is 1 kg/m3.  Winds of 100 m/s enter the 
open garage from the west, but nothing leaves from 
the east.  Also, your garage is temporarily intact, so the 
other walls, floor, and ceiling prevent winds in those 
other directions.  The east end of your garage is 8 m 
from the open west end.  What is the density change in 
your garage during the first 1 s, neglecting advection?

Solution
Given: Udoor = 100 m/s,  Uend = 0 m/s,  ∆x = 8 m,
  ρ  =  1 kg/m3.
Find:  ∆ρ/∆t = ? kg·m3·s–1 .

Use eq. (10.60), with  V = W = 0 because the other walls, 
roof, and floor prevent winds in those directions:
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 ∆ρ/∆t  = +12.5 kg·m3·s–1 .

Check:  Units OK.  Physics OK.
Discussion:  Due to Bernoulli’s principle (Local 
Winds chapter), you won’t have to worry about this 
high density for long.  The pressure inside your garage 
will increase so fast that it will blow out your walls 
and roof as if a bomb exploded.  So don’t leave your ga-
rage door (or your windows) open during a tornado.

FocUs  •  eötvös effect

 When you move along a path at constant distance 
R above Earth’s center, gravitational acceleration ap-
pears to change slightly due to your motion.  The 
measured gravity |gobs| = |g| – ar ,  where:

      ar = 2·Ω·cos(ϕ)·U  +  (U2 + V2)/R  

The first term is the vertical component of Coriolis 
force (eq. 10.17e in the Focus box on p.297), and the last 
term is centrifugal force as you follow the curvature 
of the Earth.  Thus, you feel lighter traveling east and 
heavier traveling west.  This is the Eötvös effect.

Figure 10.26
Inflow and outflow 
from a fixed volume.
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 Horizontal divergence (D) is defined as

    D
U
x

V
y

= +∆
∆

∆
∆

 (10.63)

Negative values of D correspond to convergence.  
Plugging this definition into eq. (10.62) shows that 
vertical velocities increase with height where there 
is convergence:
                  ∆

∆
W
z

D= −  (10.64)

 For situations such as circular isobars around 
a low pressure center, cylindrical coordinates are 
easier to use (Fig. 10.27).  The continuity equation is 
then
    2·V

R
W
z

in = ∆
∆

 •(10.65a)

where R is the radius of the cylinder, and ∆z is the 
cylinder depth.  We assume that the radial inflow 
velocities Vin through the sides of the cylinder are 
equal everywhere.  When Vin is positive (indicating 
horizontal inflow), then ∆W is also positive (indicat-
ing vertical outflow).   
 If a cylinder of air is at the ground where W = 0 at 
the cylinder bottom, then W at the cylinder top is:

    W = (2 · Vin · ∆z) / R   (10.65b)
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where U, V, and W are the wind components in the x, 
y, and z directions, respectively, and t is time.
 Be careful when calculating the wind gradients; 
calculate them as wind at location 2 minus wind at 
location 1, divided by distance at location 2 minus 
distance at location 1.  Do not accidently subtract 1 
from 2 in the numerator, and then subtract 2 from 1 in 
the denominator, because it gives the wrong sign.

incompressible continuity equation
 Density at any fixed altitude changes only a little 
with temperature and humidity for most non-violent 
weather conditions.  Therefore, we can neglect mass 
changes within the volume, compared to the inflow 
and outflow.  The air is said to be incompressible 
when the density does not change (∆ρ ≈ 0).  This ap-
proximation fails in strong thunderstorm updrafts 
and tornadoes.
 For incompressible flow, the left hand side and 
the advection terms of eq. (10.60) are zero.  This re-
quires inflow to balance outflow: 
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This continuity equation is illustrated in Fig. 10.26 
for an example of inflow and outflow across the faces 
of a cube.  The length of the grey arrows represents 
the strength of the wind components.  Also, for this 
example ∆x = ∆y = ∆z.
  In the x-direction of this particular illustration, 
there is less wind (U) entering the cube than leaving 
(U + ∆U).  This is called divergence.  For this case, 
∆U is positive.  In the z-direction (vertical), there is 
more air entering (W) than leaving (W + ∆W), in Fig. 
10.26.  This is called convergence, and ∆W is nega-
tive.  In the y-direction, the air entering (V) and leav-
ing (V + ∆V) are equal, so there is no convergence or 
divergence.  For this example, ∆V is zero.
 For this example shown in Fig. 10.26, the continu-
ity equation is

  (positive)  +  (0)  +  (negative)  = 0

so we anticipate that mass is conserved.  In the real 
atmosphere, the directions having convergence or 
divergence might differ from this example, but the 
sum must always equal zero.  Namely convergence 
in one or two directions must be balanced by diver-
gence in the other direction(s).

Figure 10.27
Mass conserva-
tion in cylindrical 
coordinates.

Solved Example
 At a radius of 400 km from a low center, boundary 
layer winds have a 2 m/s component that crosses the 
circular isobars inward.  If the boundary layer is 1 km 
thick, estimate the average vertical velocity out of the 
top of the boundary layer.

Solution
Given: Vin = 2 m/s,  R = 400 km,  ∆z = zi = 1 km
Find:  W = ? m/s

Use eq. (10.65b):   W V
z

Rin= ∆ =2 2 3
1

500
· · ·( )·m/s

km
km    = 0.01 m/s

Check:  Units OK.  Physics OK.
Discussion:  For non-thunderstorm conditions, this 
magnitude of about 1 cm/s is typical for vertical ve-
locities in the atmosphere.  Such small velocities allow 
use of the hydrostatic assumption (see Chapter 1).
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Boundary-Layer pumping
 Around low-pressure regions near the surface, 
turbulent drag causes horizontal inflow (conver-
gence) and slower tangential winds within the 
boundary layer.  There is no vertical air motion (W = 
0) at the bottom of the boundary layer because of the 
ground.   Thus, horizontal inflow in the boundary 
layer must be balanced by vertical outflow from the 
boundary-layer top. 
 This mechanism for creating mean upward mo-
tion is called Ekman pumping or boundary-
layer pumping.  The upward motion carries water 
vapor, which then condenses in the adiabatically 
cooled air, causing clouds and precipitation. Thus, 
low-pressure regions generally have foul weather.
 Around high-pressure centers, turbulent drag 
causes horizontal outflow (divergence).  This is bal-
anced by downward motion called subsidence at 
the top of the boundary layer.  Subsidence warms air 
adiabatically, thereby evaporating most clouds and 
causing fair weather in high-pressure regions.
 In the section on the BLG wind, we defined VBLG 
as the radial component of wind, which by defini-
tion equals the inflow velocity Vin for eq. 10.65 (see 
Fig. 10.28).  Unfortunately, we were unable to find an 
analytical solution for VBLG.  However, there is an 
analytical solution available for VBL from an earlier 
section, which is slightly greater than VBLG. For the 
subsequent analysis, we will use Vin ≈ VBL, know-
ing that the result will be an upper limit on what 
are likely slower inflow velocities in the real atmo-
sphere. 
 Assuming that the winds are relatively strong 
around lows, and that cloudy conditions preclude 
strong surface heating or cooling, we can assume 
that the boundary layer is statically neutral.  For 
this situation, the inflow velocity across the isobars 
is given by eq. (10.41b).
 Combining this inflow velocity with the cylin-
drical form of the continuity equation (10.65) allows 
us to calculate the vertical velocity WBL at the top of 
the boundary layer (Fig. 10.28):

    W
b C
f

G
RBL

D

c
=

2 2· ·
·  •(10.66)

where R is the radius of curvature of the isobars 
around the low center, G is the geostrophic wind 
speed, fc is the Coriolis parameter, and CD ( ≈ 0.005 
over land) is the drag coefficient for a neutral bound-
ary layer.  
 The factor b = { 1 – 0.5·[CD·G/( fc·zi)] }  is from 
eq. (10.41b), where boundary-layer depth is zi.  For 
simplicity, the statically neutral boundary-layer 
depth within a cyclone can be approximated as 

    z
G

Ni
BV

≈  (10.67)

where NBV is the Brunt-Väisälä frequency  (see the 
Stability chapter) above the boundary layer.  This al-
lows b to be rewritten as:  b = { 1 – 0.5·[CD·NBV/fc]}.  
The approximation for boundary-layer cross-isobar-
ic flow is valid only when [CD·NBV/fc] < 1.
 The updraft velocity in eq. (10.66) depends on 
both the size and rotation speed of the cyclone.  
Vorticity is one measure of the combined effects 
of rotation speed and size.  Geostrophic relative 
vorticity can be defined as

    ζg
G

R
=

2·
 (10.68)

which is a measure of the rotation of the air.  More 
details of vorticity will be covered in the Global Cir-
culation chapter.
 Using the geostrophic vorticity in eq. (10.66) 
yields an alternative expression for the vertical ve-
locity pumped out of the top of a cyclone:
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 The terms outside of the brackets suggest that 
greater vertical velocities (and hence nastier storms) 
occur for stronger geostrophic winds (i.e., tighter 
packing of isobars) over rougher terrain, and where 
there is greater curvature of the cyclonic flow.  Also, 
lower latitudes give smaller Coriolis parameters, 
which allow greater vertical velocity.
 The term in square brackets shows that the fastest 
vertical velocity is expected in statically neutral flow 
(where NBV = 0) above the boundary layer.  Greater 
static stabilities cause weaker vertical velocities.
 By utilizing the approximation for mixed-layer 
depth (eq. 10.67), an internal Rossby radius of 
deformation can be approximated as

Figure 10.28
Convergence and updrafts in a cyclone.
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    λR
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where zi is the boundary-layer depth and zT is the 
depth of the troposphere.  The internal Rossby radi-
us of deformation is discussed in more detail in the 
Global Circulation chapter, and an external Rossby 
radius is given in the Airmasses & Fronts chapter.
 Thus, an alternative form for the vertical velocity 
equation can be written using the Rossby radius of 
deformation:
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Kinematics

 Kinematics is the study of patterns of motion, 
without regard to the forces that cause them.  We 
will focus on horizontal divergence, vorticity, and 
deformation.  All have units of  s–1 .
 We have already encountered divergence, D, 
the spreading of air:

    D
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y

= +∆
∆

∆
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 (10.72)

Figure 10.29a shows an example of pure divergence.  
Its sign is positive for divergence, and negative for 
convergence (when the wind arrows point toward 
a common point).  
 Vorticity describes the rotation of air (Fig. 
10.29b).  The relative vorticity, ζr , is given by:

    ζr
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y

= −∆
∆

∆
∆

 (10.73)

The sign is positive for counterclockwise rotation (i.e., 
cyclonic rotation in the N. Hemisphere), and nega-
tive for clockwise rotation.  Vorticity is discussed 
in greater detail in the Global Circulation chapter.  
Neither divergence nor vorticity vary with rotation 
of the axes — they are rotationally invariant. 
 Two types of deformation are stretching defor-
mation and shearing deformation (Figs. 10.29c & d).  
Stretching deformation, F1, is given by:
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∆
∆
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 (10.74)

The axis along which air is being stretched (Fig. 
10.29c) is called the axis of dilation (x axis in this 

Solved Example
 A geostrophic wind of 10 m/s blows cyclonically 
around a low-center with radius of curvature of 1000 
km.  The latitude is such that fc = 0.0001 s–1, and the 
drag coefficient is 0.005.  The tropospheric lapse rate is 
standard above the BL.  
 What is the vertical velocity out of the top of the 
boundary layer?  Also, estimate the boundary-layer 
depth, geostrophic relative vorticity, and internal 
Rossby radius.

Solution
Given:  G = 10 m/s,  R = 106 m,  fc = 0.0001 s–1,
 CD = 0.005,  NBV = 0.0113 s–1 (from a previous
 solved example using the standard atmos.)
Find:  zi = ? m,  ζg = ? s–1,   λR = ? km,  WBL = ? m/s
Assume: tropospheric depth  zT = 11 km

Use eq. (10.67):
 zi ≈ G/NBV = (10 m/s)/(0.0113 s–1) =  885 m 

Use eq. (10.68):

 ζg =
×

2 15

5 105
·( )m/s

m
   = 2x10–5 s–1 

Use eq. (10.70):
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s
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km1   = 1243 km 

First  check that  [CD·NBV/fc] < 1.
 [0.005·(0.0113s–1)/(0.0001s–1)] = 0.565    < 1.  OK.

Use eq. (10.71):  WBL = 
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11
 = (0.01 m/s) · [0.718] = 0.0072 m/s

Check:  Units OK.  Physics OK.
Discussion:  This vertical velocity of 7.2 mm/s is typ-
ical of synoptic circulations.  Although weak, it is suf-
ficient to lift air to cause condensation, releasing latent 
heat which allows stronger buoyant updrafts within 
the clouds.
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example), while the axis along which air is com-
pressed is called the axis of contraction (y axis in 
this example).  
 Shearing deformation, F2, is given by:
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 (10.75)

As you can see in Fig. 10.29d, shearing deformation 
is just a rotated version of stretching deformation.  
The total deformation, F, is:

    F F F= +
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2
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2 1 2/  (10.76)

Deformation often occurs along fronts. Most real 
flows exhibit combinations of divergence, vorticity, 
and deformation. 

measUrinG WinDs

 For weather stations at the Earth’s surface, wind 
direction can be measured with a wind vane 
mounted on a vertical axel.  Fixed vanes and other 
shapes can be used to measure wind speed, by us-
ing strain gauges to measure the minute deforma-
tions of the object when the wind hits it.
 The generic name for a wind-speed measuring 
device is an anemometer.  A cup anemometer 
has conic- or hemispheric-shaped cups mounted on 
spokes that rotate about a vertical axel.  A propellor 
anemometer has a propellor mounted on a hori-
zontal axel that is attached to a wind vane so it al-
ways points into the wind.  For these anemometers, 
the rotation speed of the axel can be calibrated as a 
wind speed.
 Other ways to measure wind speed include a hot-
wire or hot-film anemometer, where a fine metal 
wire is heated electrically, and the power needed to 
maintain the hot temperature against the cooling 
effect of the wind is a measure of wind speed.  A 
pitot tube that points into the wind measures the 
dynamic pressure as the moving air stagnates in a 
dead-end tube.  By comparing this dynamic pres-
sure with the static pressure measured by a differ-
ent sensor, the pressure difference can be related to 
wind speed.
 Sonic anemometers send pulses of sound back 
and forth across a short open path between two op-
posing transmitters and receivers of sound.  The 
speed of sound depends on both temperature and 
wind speed, so this sensor can measure both.  Trac-
ers such as smoke, humidity fluctuations, or clouds 
can be tracked photogramatically from the ground 

Figure 10.29
Kinematic flow-field definitions.  Black arrows represent wind 
velocity.
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equation), while the word dynamics describes how 
forces cause winds (as given by Newton’s second 
law).

threads
 Forces cause winds, and winds flow over moun-
tains to form mountain waves and lenticular clouds 
(Chapter 17).  Winds embody the global circula-
tion (Chapter 11), which moves air masses around 
to create fronts (Chapter 12), extratropical cyclones 
(Chapter 13) and our global climate (Chapter 21).  
The equations of motion are solved every day on 
large computers to make the daily weather fore-
casts (Chapter 20).  The interplay between buoyancy 
(Chapter 5) and dynamics creates phenomena such 
as thunderstorms, tornadoes (Chapters 14 and 15), 
and hurricanes (Chapter 16).  Winds advect air pol-
lutants from place to place (Chapter 19).
 Not only do winds advect temperature (Chap-
ter 3), but horizontal temperature variations cause 
horizontal pressure variations via the hypsometric 
equation (Chapter 1), thereby driving the jet-stream 
winds.  Winds riding over colder air masses carry 
water vapor (Chapter 4), some of which can con-
dense to make clouds (Chapter 6) and precipita-
tion (Chapter 7).  Clouds imbedded in the air will 
move horizontally with the air, and can be tracked 
by satellite (Chapter 8) to estimate the wind speed 
and direction.  The complexity of the atmosphere is 
becoming apparent.   

exercises

numerical problems
N1.  Plot the wind symbol for winds with the follow-
ing directions and speeds:
 a. N at 5 kt   b. NE at 35 kt c. E at 65 kt
 d. SE at 12 kt  e. S at 48 kt  f. SW at 105 kt
 g. W at 27 kt  h. NW at 50 kt i. N at 125 kt

N2.  Find the acceleration of a 75 kg person when 
pushed by a force (N) of
 a. 1     b. 2   c. 5 d. 10 e. 20  f. 50
 g. 100    h. 200 i. 500 j. 1000  k. 2000

N3.  If the initial velocity of an object is zero, find the 
final velocity after 100 s for an applied net force per 
unit mass of:
 a. 5 N/kg   b. 10 m·s–2

 c. 15 N/kg  d. 20 m·s–2

 e. 25 N/kg  f.  30 m·s–2

 g. 35 N/kg  h. 40 m·s–2

 i.  45 N/kg  j.  50 m·s–2

or from remote sensors such as laser radars (lidars) 
or satellites, and the wind speed then estimated 
from the change of position of the tracer between 
successive images.  
 Measurements of wind vs. height can be made 
with rawinsonde balloons (using a GPS receiver 
in the sonde payload to track horizontal drift of the 
balloons with time), dropsondes (like rawinsondes, 
only descending by parachute after being dropped 
from aircraft), pilot balloons (carrying no payload, 
but being tracked instead from the ground using 
radar or theodolites), wind profilers, Doppler 
weather radar (see the Remote Sensing chapter), 
and via anemometers mounted on aircraft.

sUmmary

 Pressure-gradient force can start winds moving, 
and can change wind direction and speed.  This 
force points from high to low pressure on a constant 
altitude chart (such as at sea-level), or points from 
high to low heights on an isobaric chart (such as the 
50 kPa chart).
 Once the air is moving, other forces such as 
turbulent drag or Coriolis force also act on the air.  
Coriolis force is an apparent force that accounts for 
our moving frame of reference on the rotating Earth.  
Turbulent drag is important only near the ground, in 
the boundary layer.  The relationship between forces 
and acceleration of the winds is given by Newton’s 
second law of motion.
 When all forces balance, the winds are steady.  
In regions of straight isobars above the boundary 
layer, pressure-gradient and Coriolis forces balance 
to cause winds that are geostrophic.  Around highs 
or lows, there are slight imbalances associated with 
centrifugal force, which causes steady-state gradient 
winds.  In the boundary layer, winds are slower than 
either geostrophic or gradient because of turbulent 
drag.  In tornadoes and waterspouts, centrifugal and 
pressure gradient forces nearly balance to create the 
intense cyclostrophic wind.  In oceans, currents can 
inertially flow in a circle.
 The two most important force balances at mid-
latitudes are hydrostatic balance in the vertical, and 
geostrophic balance in the horizontal.  
 Outside of thunderstorms, winds are well de-
scribed by incompressible mass continuity.  Thus, 
mechanisms that cause motion in one direction 
(horizontal or vertical) will also indirectly cause 
motions in the other direction as the air tries to 
maintain continuity, resulting in a circulation.  Ki-
nematics is the word that describes the behavior 
and effect of winds (such as given by the continuity 
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N4. Find the advective “force” per unit mass given 
the following wind components (m/s) and horizon-
tal distances (km):
 a. U=10, ∆U=5,  ∆x=3
 b. U=6, ∆U=–10, ∆x=5
 c. U=–8,  ∆V=20, ∆x=10
 d. U=–4, ∆V=10,  ∆x=–2
 e. V=3, ∆U=10, ∆y=10
 f. V=–5, ∆U=10, ∆y=4
 g. V=7, ∆V=–2, ∆y=–50
 h. V=–9, ∆V=–10, ∆y=–6

N5.  What is the pressure-gradient force per unit 
mass between Seattle, WA, and Corvallis, OR (about 
340 km south of Seattle), if sea-level pressure is 98.4 
kPa in Seattle and has the following pressure (kPa) 
in Corvallis?
 a. 98.6  b. 98.8  c. 99.0  d. 99.2  e. 99.4
 f. 99.6  g. 99.8  h. 100.0 i. 100.2 j. 100.4
 k. 100.6 l. 100.8 m. 101.0 n. 101.2 o. 101.4

N6.  Given U = –5 m/s and V = 10 m/s, find the com-
ponents of centrifugal force around a 800 km diam-
eter:
 a. low in the southern hemisphere
 b. high in the northern hemisphere
 c. high in the southern hemisphere
 d. low in the northern hemisphere

N7.  Calculate the Coriolis parameter for
 a. Munich, Germany
 b. Oslo, Norway
 c. Madrid, Spain
 d. Chicago, USA
 e. Buenos Aires, Argentina
 f. Melbourne, Australia
 g. Vancouver, Canada
 h. Beijing, China
 i. Moscow, Russia
 j. Tokyo, Japan
 k. (your town)

N8.  For Chicago, find the Coriolis force per unit 
mass in the N. Hemisphere for:
 a. U = 10 m/s b. V = 5 m/s  c. U= 3 m/s
 d. U = –10 m/s e. V = –5 m/s f. U = 8 m/s
 g. U = –3 m/s h. V = –8 m/s i. V = 40 m/s

N9.  For a neutral boundary layer, find the turbulent 
drag force per unit mass over a forest for
 a.  U = 5 m/s and V = 25 m/s
 b.  U = –10 m/s and V = 5 m/s
 c.  U = 5 m/s and V = –15 m/s
 d.  U = –5 m/s and V = –5 m/s
 e.  U = –40 m/s and V = 5 m/s

 f.  U = 5 m/s and V = 35 m/s
 g.  U = 25 m/s and V = –2 m/s
 h.  U = 0 m/s and V = 10 m/s

N10.  For a statically unstable boundary layer, find 
the turbulent drag force per unit mass, given a buoy-
ant velocity scale of 60 m/s and
 a.  U = 5 m/s and V = 1 m/s
 b.  U = –1 m/s and V = 3 m/s
 c.  U = 2 m/s and V = –4 m/s
 d.  U = –2 m/s and V = –1 m/s
 e.  U = –4 m/s and V = 0 m/s
 f.  U = 5 m/s and V = 3 m/s
 g.  U = 5 m/s and V = –2 m/s
 h.  U = 0 m/s and V = 2 m/s

N11.  Draw a northwest wind of 5 m/s in the S. Hemi-
sphere on a graph, and show the directions of forces 
acting on it.  Assume it is in the boundary layer.
 a. pressure gradient b. Coriolis
 c. centrifugal   d. drag

N12.  What is the geostrophic wind speed at a height 
where ρ = 0.7 kg/m3, fc = 10–4 s–1, and the pressure 
gradient ( kPa/100 km) magnitude is:
 a. 0.1  b. 0.2   c. 0.3  d. 0.4  e. 0.5 
 f. 0.6  g. 0.7  h. 0.8  i. 0.9  j. 1.0
 k. 1.1  m. 1.2  n. 1.3  o. 1.4  p. 1.5

N13.  At a latitude of 60°N, find the geostrophic 
wind given a height gradient (m/km on a constant 
pressure surface) of:
 a. 0.1  b. 0.2   c. 0.3  d. 0.4  e. 0.5 
 f. 0.6  g. 0.7  h. 0.8  i. 0.9  j. 1.0
 k. 1.1  m. 1.2  n. 1.3  o. 1.4  p. 1.5
 
N14.  If the geostrophic wind around a high is 10 
m/s, then what is the gradient wind speed, given   fc 
= 10–4 s–1  and a radius of curvature of:
 a. 800 km   b. 500 km  c. 600 km
 d. 1000 km  e. 2000 km  f. 1500 km
 g. 700 km   h. 1200 km  i.  900 km

N15.  Find the boundary layer winds given Ug = 5 
m/s, Vg = 5 m/s, zi = 1500 m, and fc = 10–4 s–1.  Also, 
what angle do the winds cross the isobars?  This is a 
statically neutral boundary layer.   Use CD = 
 a. 0.002 b. 0.004 c. 0.006 d. 0.008 e. 0.010
 f. 0.012 g. 0.014 h. 0.016 i. 0.018 j. 0.019

N16.  Same as previous problem, but for an unstable 
boundary layer with wB (m/s) of: 
 a. 75   b. 100   c. 50  d. 200  e. 150
 f. 225  g. 125  h. 250  i. 175  j. 275
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(∆U/∆y , ∆V/∆y)  in units of (m/s)/(500 km)  as given 
below:
 a. (–5, –5)    b. (–5, 0) c. (0, –5)  d. (0, 0)   e. (0, 5)
 f. (5, 0)    g. (5, 5)   h. (–5, 5)   i. (5, –5)

Understanding & critical evaluation
U1.  Compare eq. (10.1) with (1.24), and discuss.

U2.  Can eqs. (10.6) be used to make a forecast if the 
initial conditions (i.e., the current winds) are not 
known?  Discuss.

U3.  If all of the net forces (eq. 10.7) are zero, does 
that mean that the wind speeds (eq. 10.5) are zero?  
Explain.

U4.  Eqs. (10.8) suggest that winds can advect winds.  
How is that possible? 

U5.  In eqs. (10.8), why does advection depend on the 
gradient of winds (e.g., ∆U/∆x) across the Eulerian 
domain, rather than on just the value of wind that is 
being blown into the domain?

U6.  In Fig. 10.5, and on weather maps, what is the 
relationship between packing of isobars (i.e., the 
number of isobars that cross through a square cm of 
weather map) and the pressure gradient?  

U7.  In the N. Hemisphere, the pressure gradient 
points from high to low pressure.  Which way does 
it point in the S. Hemisphere?

U8.  Eqs. (10.9) give the horizontal components of the 
pressure-gradient force.  Combine those equations 
vectorially to show that the vector direction of the 
pressure-gradient force is indeed perpendicular to 
the isobars and pointing toward lower pressure, for 
any arbitrary isobar direction such as shown in Fig. 
10.5.  

U9.  Eqs. (10.13) give the horizontal components 
of centrifugal force.  Combine those equations 
vectorially to show that the vector direction of cen-
trifugal force is indeed outward from the center of 
rotation, and is proportional to the square of the tan-
gential velocity.

U10.  An air parcel at rest (relative to the Earth) near 
the equator experiences greater tangential veloc-
ity due to the Earth’s rotation than do air parcels at 
higher latitudes.  Yet the Coriolis parameter is zero 
at the equator.  Why?

N17(§).  Recompute MBLG as in the solved example in 
the Boundary Layer Gradient Wind section, but with 
the following changes:
 a. G = 10 m/s b. zi = 2 km  c. CD = 0.002
 d. R = 1000 km e. fc = 2x10–4 s–1  
 f. G = 15 m/s  g. zi = 1.5 km h. CD = 0.005
 i. R = 1500 km j. fc = 1.5x10–4 s–1  

N18.  Given a pressure gradient of 0.5 kPa/m, com-
pute the cyclostrophic wind at the following radii 
(m):  a. 10    b. 12  c. 14    d. 16  e. 18 
  f. 20      g. 22     h. 24    i. 26   j. 28   k 30

N19.  For an inertial wind, find the radius of curva-
ture (km) and the time period (h) needed to com-
plete one circuit, given fc = 10–4 s–1 and an initial 
wind speed (m/s) of:  
 a. 1 b. 2 c. 3 d. 4 e. 6 f. 7   g. 8 h. 9
 i. 10 j. 11 k. 12 m. 13  n. 14 o. 15 

N20.  Find the antitriptic wind for the conditions of 
exercise N15.

N21.  The boundary layer is 2 km thick.  At a radius 
of 200 km from a low center, estimate the average 
vertical velocity through the top of the boundary 
layer (BL), given an inward radial wind component 
(m/s) of:   a. 2  b. 1.5  c. 1.2  d. 1.0
 e. –0.5  f. –1  g. –2.5  h. 3 i. 0.8  j. 0.2

N22.  Estimate boundary layer depth within a cy-
clone given an isothermal environment above the 
boundary layer, and a geostrophic wind (m/s) near 
the surface of: a. 5 b. 10  c. 15  d. 20  e. 25
 f. 30  g. 35 h. 40 i. 3  j. 8  k. 2 l. 1
 
N23(§).  For a 1 km thick boundary layer over a sur-
face of drag coefficient 0.003, plot the vertical veloc-
ity due to boundary-layer pumping as a function of 
geostrophic wind speed, but for only wind speeds 
within the valid range for that eq.  Plot separate 
curves for the following radii (km) of curvature:  
(Assume a latitude of 45°, & standard atmosphere)
 a. 500  b. 1000 c. 2000 d. 3000 e. 4000
(Assume a latitude of 60°, & standard atmosphere)
 f. 500  g. 700  h. 900  i. 1500  j. 2500

N24.  Estimate the value of internal Rossby radius 
of deformation at latitude 60°N for a tropospheric 
depth of 11 km and geostrophic wind speed of 15 
m/s.  Assume a boundary-layer depth of
 a. 500 m b. 1 km c. 2 km d. 750 m e. 250 m
 f. 1.5 km g. 2.5 km h. 3 km i. 3.5 km j. 100 m

N25.  Given ∆U/∆x = ∆V/∆x = (5 m/s) / (500 km), find 
the divergence, vorticity, and total deformation for 
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U11.  Eqs. (10.17) give the horizontal components 
of the Coriolis force.  Combine those equations 
vectorially to show that the vector direction of the 
Coriolis force is indeed 90° to the right of the wind 
direction, for any arbitrary wind direction such as 
the two shown in Fig. 10.6.  

U12.  For the subset of eqs. (10.1 - 10.17) defined 
by your instructor, rewrite them for the S. Hemi-
sphere.

U13.  Eqs. (10.19) give the horizontal components of 
the turbulent drag force.  
 a.  Combine those equations vectorially to show 
that the vector direction of the drag force is indeed 
opposite to the wind direction, for any arbitrary 
wind direction.  
 b.  Show that the magnitude of the drag force is 
proportional to the square of the wind speed, M, for 
statically neutral conditions.

U14.  Compare the values of the turbulent transport 
velocity during windy (statically neutral) and con-
vective (statically unstable) conditions.  Discuss.

U15.  Plug eqs. (10.26) into (10.27) to find the vector 
speed and direction (see Chapter 1) of the geostrophic 
wind as a function of the vector pressure gradient.

U16.  Re-derive the geostrophic wind eqs. (10.26) for 
the S. Hemisphere.

U17.  Derive eqs. (10.29) from eqs. (10.26).  

U18.  The geostrophic wind approaches infinity as 
the equator is approached (see Fig. 10.10), yet the 
winds in the real atmosphere are not infinite there.  
Why?

U19.  Verify that eq. (10.33) is indeed a solution to the 
gradient wind eqs. (10.31).  

U20.  Verify that eqs. (10.34) are solutions to eq. 
(10.33).

U21.  Imagine an idealized weather map that had 
a single high pressure center next to a single low 
pressure center.  Further, suppose that if you were 
to draw a line through those two centers, that the 
pressure variation along that line would be the same 
as Fig. 10.14.  Given that information, and assuming 
circular cyclones and anticyclones, draw isobars on 
the weather map at ±0.5 kPa increments, starting at 
100 kPa.  Comment on the packing of (i.e., how close-
ly spaced are) isobars near the centers of the cyclone 
and anticyclone.

U22.  a. Is there any limit on the strength of the pres-
sure gradient that can occur just outside of the cen-
ter of cyclones? (Hint: consider Fig. 10.14)
 b. What controls this limit?
 c. What max winds are possible around cy-
clones?

U23.  Calculate the geostrophic and gradient winds, 
as appropriate, at a number of locations using the 
height contours plotted in Fig. 10.3.  Compare them 
to the observed winds and comment.

U24.  What is implicit about the implicit solution (eq. 
10.39) for the boundary-layer wind?

U25.  How accurate are the approximate boundary 
layer wind solutions (eq. 10.41)?  Under what condi-
tions are the approximate solutions least accurate?  
(Hint: compare with an iterative solution to the im-
plicit equations 10.39).

U26.  Why is an exact explicit solution possible for 
the steady-state winds in the unstable boundary 
layer, but not for the neutral boundary layer?

U27.  Verify that eqs. (10.42) are indeed exact solu-
tions to (10.39) or (10.38).

U28(§).  a. Recreate on a spreadsheet the solved ex-
ample for the boundary-layer gradient winds.  
 b. Recreate the checks of that equation for the 
special cases where it reduces to the geostrophic 
wind, gradient wind, and boundary-layer wind.
 c. Compare the results from (b) against the re-
spective analytical solutions (which you must com-
pute yourself).
 d. Can the analytical solutions for the gradient 
wind and the (neutral) boundary layer wind be com-
bined to yield an approximate analytical solution to 
the BLG winds.  If so, what are the limitations, and 
the magnitude of the errors.  (Hint:  Try substitut-
ing Mtan in place of G in the equations for boundary 
layer wind.)

U29.  Photocopy Fig. 10.13, and enhance the copy 
by drawing additional vectors for the boundary-
layer wind and the BLG wind.  Make these vectors 
be the appropriate length and direction relative to 
the geostrophic and gradient winds that are already 
plotted.

U30.  Verify that the cyclostrophic winds are indeed 
a solution to the governing equations (10.45).
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 b. Same as (a), but do this for several days in a 
row.  Then plot a graph of how the pressure gradient 
changes with time over your location.

W4.  Search the web for 50 kPa (500 mb) weather 
maps that cover part of the S. Hemisphere.  Com-
pute the geostrophic and gradient wind speeds and 
directions in regions of straight and curved isobars, 
respectively, and compare with upper-air observa-
tions.  Discuss the differences between these winds 
and corresponding winds in the N.  Hemisphere.

W5.  Find a current 50 kPa (= 500 mb) weather map 
(or other map as specified by your instructor) that 
has height contours already drawn on it.  Look for 
a region in the map where the isobars are nearly 
straight.
 a.  Compute the geostrophic wind speed compo-
nents, and the total geostrophic wind speed vector 
(speed and direction).
 b.  If upper-air (rawinsonde) observations are 
available near your area, compare the measured 
winds with the geostrophic value computed from 
part (a).  
 c.  If there are multiple regions of nearly straight 
isobars at different latitudes in your weather map, 
see how the observed winds in these regions vary 
with latitude, and compare with the expected lati-
tudinal variation of geostrophic wind (as from Fig. 
10.10). 

W6.  a.  Same as W5, except look for a region on the 
map where the isobars are curving in a cyclonic 
(counterclockwise in the N. Hemisphere) direc-
tion when following along with the wind direction.  
Compute the gradient wind for this case.
 b. Same as (a) but for anticyclone (clockwise) 
turning winds.
 c.  Compare the measured winds from 
rawinsondes to the theoretical winds from (a) and 
(b).  Confirm that the gradient winds (both theo-
retical and observed) are slower than geostrophic 
around lows, and faster around highs.

W7.  a.  Find a sea-level weather map from the web 
that has isobars drawn on it.  Look for a day or a re-
gion where there are neighboring regions of strong 
high and low pressure.  Print this map, and draw a 
straight line connecting the centers of the high and 
the low.  Extend this line well past the centers of 
the high and low.  Using the isobars that cross your 
drawn line, find how pressure varies with distance 
between the high and low, and plot the results simi-
lar to Fig. 10.14.  
 b.  If you set the location of the center of the 
high as the origin of your coordinate system, check 

U31.  Re-derive the equations for cyclostrophic wind, 
but in terms of height gradient on a constant pres-
sure surface, instead of pressure gradient along a 
constant height surface.  [Hint: Compare eqs. (10.29) 
to (10.26).]

U32.  What aspects of the Approach to Geostrophy Fo-
cus Box are relevant to the inertial wind?  Discuss.

U33.   a.  Derive eq. (10.66) based on geometry and 
mass continuity (total inflow = total outflow).  
 b.  For horizontal winds, we know that an in-
creased drag coefficient will reduce wind speed.  
Why in eq. (10.66) does an increased drag coefficient 
cause increased vertical wind speed?
 c.  When considering that factor b in eq. (10.66) is 
a negative function of the drag coefficient, does your 
answer to part (b) change?   

U34.  The paragraph after eq. (10.69) gives a physical 
interpretation of the equation.  Show how that inter-
pretation was reached, by examining each term in 
the equation and discussing its impact on W.

U35.  Given eq. (10.70), determine the physical mean-
ing of the internal Rossby radius of deformation by 
how it affects the various terms in (10.71).

U36.  Regarding horizontal balances of forces, if 
only Coriolis and turbulent-drag forces were active, 
speculate on the nature of the resulting wind.

U37.  Modify eqs. (10.66) through (10.71) if necessary, 
to describe the boundary-layer pumping around 
highs (anticyclones) rather than around lows (cy-
clones).  Discuss the significance of your equations.

U38.  Rewrite the total deformation as a function of 
divergence and vorticity.  Discuss.

Web-enhanced questions
W1.  Search the web for historical discussions of 
Isaac Newton, and summarize what you find.  What 
did you find most unusual or interesting?

W2.  Search the web for “Coriolis Force”, to find sites 
that show animations of the movement of objects in 
a rotating coordinate system.  Tabulate a list of the 
best sites.

W3.  a. Search the web for a current sea-level weather 
map that covers your area, and which includes iso-
bars.  Measure the distance (km) between isobars, 
and compute the pressure gradient force.
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whether the shape of the pressure curve agrees with 
eq. (10.37b).   Confirm that the pressure variation 
across a low-pressure center can have a cusp, while 
that across a high center cannot.

W8.  Search the web for a weather map at 50 kPa (500 
mb) or any other altitude above the boundary layer, 
that includes the equator.  Find a region of relatively 
straight isobars near the equator, and compute the 
geostrophic wind speed based on the plotted pres-
sure gradient.   Compare this theoretical wind with 
observed upper-air winds for the same altitude.  
Why don’t the observations agree with the theory?

W9.  Find a current sea-level weather map from the 
web, that shows both wind direction (such as the 
wind symbol on surface station observations), and 
isobars.  
 a.  For a region of the map where the isobars are 
relatively straight, and hopefully over non-moun-
tainous and non-coastal terrain, confirm that the 
observed boundary-layer winds indeed cross the 
isobars at some small angle from high to low pres-
sure.   What is the average angle?
 b.  For a region where the isobars are curved 
around a high or low, confirm that the winds spiral 
in towards the center of the low, and out from the 
center of a high.  
 c.  Around either the high or low, estimate the 
average value of the component of wind that repre-
sents inflow or outflow from the low or high.  Use 
that value of Vin (or Vout) in eq. (10.65) to compute 
the vertical velocity at the top of the boundary lay-
er.
 d. Based on the inward or outward component of 
velocity from (c), estimate the drag force acting on 
the air.  If this calculation is for flow around a low 
where the winds are relatively fast, find the value of 
the drag coefficient CD for statically neutral condi-
tions.

W10.  a. If it is hurricane season, search the web for a 
weather map that is just above the top of the bound-
ary layer (85 kPa or 850 mb might be good enough), 
but which is well below the altitude of the 60 kPa 
pressure.  Look for a map (either observed or fore-
cast) that has the height contours around the hurri-
cane on this pressure surface (85 kPa).  Find the loca-
tion just outside of the eye where the height contours 
are packed closest together, and calculate the pres-
sure gradient there.  Then use that pressure gradi-
ent to compute the cyclostrophic wind, and compare 
your theoretical value with the observed upper-air 
values at that height.  

 b.  Do the same as (a), but using a sea-level weath-
er map showing the isobars.  Also comment on the 
effect of boundary layer drag.

synthesis questions
S1.  Suppose Newton’s second law of motion was not 
a function of mass.  How would the motion of bul-
lets, cannon balls, and air parcels be different, if at 
all?

S2.  What if Newton’s second law of motion stated 
that velocity was proportional to force/mass.  How 
would weather and climate be different, if at all?

S3.  What if wind could not advect itself.  How would 
the weather and climate be different, if at all?

S4.  Suppose that pressure-gradient force was along 
isobars, rather than perpendicular to them.  De-
scribe how winds would be different, how weather 
maps would be different, and how this might affect 
the weather and climate, if at all.

S5.  There is some debate in the literature that our 
understanding of Coriolis force might be incorrect.  
We think that Coriolis force is an apparent force.  
Can an apparent force change the momentum and 
kinetic energy of air parcels?  If so, would this vio-
late Newton’s laws when viewed from a non-rotat-
ing frame?  Discuss.  (Hint: look for a series of de-
scriptive articles by Anders Persson that appeared 
in Weather magazine starting in year 2000.)

S6.  Fig. 10.7 shows wind shear across the top of the 
boundary layer, where subgeostrophic winds in the 
boundary layer change to geostrophic winds above 
the boundary layer.  The shear can exist because a 
strongly statically stable layer of air caps the bound-
ary layer.  If such a stable capping inversion did not 
exist, how might the wind profile be different over 
the depth of the troposphere?

S7.  Suppose that turbulent drag force acted 90° to 
the right of the wind direction in the boundary layer.  
Discuss how the boundary-layer winds would work 
around highs and lows, and in regions of straight 
isobars.  How would the weather and climate be dif-
ferent, if at all?

S8.  Suppose that the boundary-layer drag force did 
not increase with velocity (in the case of an unstable 
boundary layer) or with velocity squared (in the case 
of a neutral boundary layer), but was constant re-
gardless of wind speed.  How would the boundary 
layer winds, weather, and climate change, if at all?
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S9.  What if there were no Coriolis force?  How would 
winds, weather, and climate be different, if at all?

S10.  On our present world where we perceive a 
Coriolis force, are there situations where it is pos-
sible for wind to blow directly high to low pressure, 
rather than more-or-less parallel to the isobars?  De-
scribe such scenarios.

S11.  What if geostrophic winds could turn around 
high or low pressure systems without feeling cen-
tripetal or centrifugal force.  How would the weath-
er and climate be different, if at all?

S12.  Suppose that cusps in pressure were allowed at 
high-pressure centers as well as at low pressure cen-
ters (see Fig. 10.14) so that strong pressure gradients 
could exist near the center of both types of pressure 
centers.  Describe how the winds, weather, and cli-
mate might be different, if at all?

S13.  Suppose that the Earth’s surface were friction-
less.  How would the weather and climate be differ-
ent, if at all?

S14.  Suppose that the tropopause acted like a rigid 
lid on the troposphere, and that the air at the top of 
the troposphere felt frictional drag against this rigid 
lid.  How would the winds, weather, and climate be 
different, if at all?

S15.  What if the Earth were a flat spinning disk in-
stead of a spinning sphere.  How would the weather 
and climate be different, if at all?

S16.  Suppose the Earth’s rotation were twice as 
fast as now.  How would the weather and climate 
change, if at all?

S17.  Suppose that the axis of the Earth’s rotation 
were along a radial line drawn from the sun (i.e., in 
the plane of the ecliptic), rather than being more or 
less perpendicular to the ecliptic plane.  How would 
the weather and climate be different, if at all?

S18.  Suppose the Earth did not rotate.  How would 
the winds, weather, and climate be different, if at 
all?

S19.  Why is incompressibility such a good approxi-
mation for the real atmosphere?  How does the at-
mosphere react to density changes, that might help 
ensure little density change?  (Hint: consider the first 
solved example in the continuity equation section.)

S20.  Extend the discussion of the Focus box on 
Coriolis Force by deriving the magnitude of the 
Coriolis force for an object moving
 a. westward  b. southward

S21.  For zonal (east-west) winds, there is also a verti-
cal component of Coriolis force.  Using your own di-
agrams similar to those in the Focus box on Coriolis 
Force, show why it can form.  Estimate its magni-
tude, and compare the magnitude of this force to 
other typical forces in the vertical.  Show why a ver-
tical component of Coriolis force does not exist for 
meridional (north-south) winds.

S22. What if a cyclostrophic-like wind also felt drag 
near the ground?  This describes conditions at the 
bottom of tornadoes.  Write the equations of mo-
tion for this situation, and solve them for the tan-
gential and radial wind components.  Check that 
your results are reasonable compared with the pure 
cyclostrophic winds.  How would the resulting 
winds affect the total circulation in a tornado?  As 
discoverer of these winds, name them after your-
self. 

S23.  The time duration of many weather phenom-
ena are related to their spatial scales, as shown by 
eq. (10.53) and Fig. 10.24.   Why do most weather 
phenomena lie near the same diagonal line on a log-
log plot?   Why are there not additional phenomena 
that fill out the relatively empty upper and lower 
triangles in the figure?  Can the distribution of time 
and space scales in Fig. 10.24 be used to some ad-
vantage?


