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1. FROM ARISTOTLE TO GALILEO 

From the 17th century well into the 19th century the deflection of falling 

objects was a hotly debated subject, first as a way to prove or disprove the 

Copernican theory, later about the details of the deflection. This paper from 1803 

“Mémoire sur le mouvement d’un corps qui tombe d’une grande hauteur” by 

Laplace is a scientific milestone in this debate: 

 It was written to predict the likely deflection of objects dropped in a mine 

shaft for a campaign to prove the rotation of the Earth; 

 It was made in an unofficial competition with the renowned German  

mathematician Friedrich Gauß who had got the same assignment ; 

 Both arrived at the correct result and were thereby the first scientists to 

derive and physically interpret what was later to become known as the 

“Coriolis Effect”. 

The experiments of deflection of falling bodies was an answer to a problem 

already posed by Aristotle and repeated by anti-Copernicans: if the Earth was 

spinning around its axis an object dropped from a tower would be “left behind”, 

i.e. deflected to the west
1
. In Galileo’s (alleged) experiment at the tower of Pisa 

the objects landed at the base with no obvious deflection. But this was, according 

to Galileo and other supporters of the Copernican model, not an indication that 

the Earth did not move since the objects took part in the Earth’s rotation. As 

everybody could see: an object dropped from a mast on a sailing ship in full 

motion would also land at the foot of the mast.  

                                                 
1. Earth spins around its axis from west to east. 
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2. THE NAÏVE MODEL 

The debate could have ended here if the anti-Copernicans had based all 

their opposition on a possible westerly deflection. What the scientists among 

them actually claimed was that objects would move differently depending on if 

the Earth was moving or not. And here they could score several points. Galileo 

had himself admitted in his famous Dialogo sopra i due sistemi del mondo in 

1632 that since the top of the tower was further away from the Earth’s centre, 

the rotational velocity at the top would be slightly larger than at the surface. An 

object falling from the top would therefore overtake the tower and land slightly 

ahead, to the east of it. 

If we put this reasoning into mathematics, we will find that an object 

dropped in northern Italy (at 43° N) from a tower of 100 m height will take 4.515 

seconds to reach the ground. Since the rotational velocity at the top is 5.3 

mm/sec faster than at the surface, the object will, when it reaches the surface, 

have “moved ahead” by 24 mm. (fig.1).  

 
Fig. 1: A simplistic model of the deflection of vertically falling objects. Because 

the top of a tall building due to the earth’s rotation moves faster than the bottom of the 

building, an object dropped from the top will, with its slightly higher horizontal velocity, 

reach the surface ahead of an object moving with the surface velocity.  

 

Such small deviations were at Galileo’s time difficult to confirm by 

measurements. Even worse, the deflection according to this simplistic model is 

not quite correct and yields results which are 50% too large. This is because we 

have ignored the curvature of the earth. During the 4.5 seconds the object falls, 

the tower and its environment move 1½ kilometre to the east. Not a long 

distance, but the curvature of the Earth’s surface, although very small, cannot be 

neglected. It is to their scientific credit that both the Copernicans and the anti-
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Copernicans realised this and the debate concentrated on the kind of trajectory 

the falling object would follow. 

 

 

3. THE ITALIAN DEBATE 

To simplify the investigation they chose to focus on objects dropped from a 

tower at the equator. To allow the dropped objects to be free to continue their 

fall also after they had reached a distance to the earth centre equal to its radius 

(=surface) they designed a quite ingenious mental picture of the Earth at the 

equator halved in two hemispheres. 

 
Figure 2: In order to allow the falling bodies to continue their journey the 

Italian scientists imagined the Earth as two separate hemispheres. 

 

 

With the underlying ground no longer flat but spherically curved the 

trajectory could no longer be a parabola (or part of a parabola). So what was it? 

In his Dialogue 1632 Galileo suggested a semicircle with a diameter equal to the 

radius of the Earth. This was a pure speculation on his side, had no basis in his 

mechanical theories and was also against the generally accepted view that the 

object would follow a spiral trajectory, most likely an Archimedean spiral 

trajectory towards the Earth’s centre. But five years later he changed his mind 

and agreed in Dialogue 1638 with the prevailing view. Both sides were in full 

agreement that the object would come to rest at the centre of the Earth. 
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Figure 3: It was taken as an axiom by all scientists in the early 17th century that 

an object, able to penetrate the earth without any loss of speed, would end up 

at the centre of the Earth. The only disagreement was the type of trajectory that 

would carry it to the centre. Galileo initially suggested a semi-circle (left) against the 

prevailing opinion which favoured a spiral, most likely an Archimedean spiral (right). 

 

The debate that followed has been taken by modern historians of science as 

a textbook example of how the tremendous power of “mental or intellectual 

inertia” and of the very slow and gradual way in which even “superior minds” 

succeed in liberating themselves from the traditional and habitual, what the 

English 17th century philosopher Francis Bacon called “idola tribus”.  Because 

what everybody agreed on, that the falling body would end up in the centre of 

the earth, was fundamentally wrong! It was fundamentally wrong because it 

effectively prevented the scientists to even reach approximate or qualitatively 

correct solutions! 

The debate therefore became very confused. So for example in 1667 

Giovanni Alfonso Borelli (1608-1679) put forward a hypothesis that curved 

motion was composed of one rectilinear tangential motion and one accelerated 

towards the centre. We now know this is perfectly true, but his idea was 

rejected, also by himself and his followers, when it was found that the falling 

object would then not reach the centre of the Earth! 
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4. NEWTON’S “FANCY”  

The Italian debate quickly “spilled over” to England. David Gregory (1659-

1708), one of the members of the Royal Society, reported this Italian debate in 

1668.  It fuelled the interest in the problem also in England, and in 1674 Robert 

Hooke published a book with the title “An Attempt to Prove the Motion of the 

Earth”. One of the methods he suggested was to observe the deflection of 

objects dropped from high buildings. He had also qualitatively foreseen Newton’s 

laws in Principia: 

 All celestial bodies have an attraction or gravitational power towards their 

own centres; 

 A body put in motion in a straight line will continue to move until it by 

some power is deflected into a curved motion; 

 The nearer the object the stronger this attractive power. 

 

Hooke had thereby conceived gravity as an attractive force drawing a body 

downward, rather than being an Aristotelian “tendency to fall” within the body 

itself. Hooke’s profound physical intuition was acquired through numerous 

experiments, perhaps several hundreds. His remarkable physical intuition and 

understanding was based on mechanical analogues rather than mathematical 

reasoning and would have a crucial importance to the development of Newton’s 

thinking. 

@@@@@@@ 

In November 1679 Robert Hooke, in his capacity as newly elected Secretary 

of the Royal Society, wrote a letter to Isaac Newton. His intention was to draw 

Newton into a discussion on planetary motion, in particular the reason for the 

elliptical orbits of the planets. But Newton had something else on his mind, what 

he called “a fancy of my own”: the deflection of objects dropped from a high 

altitude as proof of the Earth’s rotation. 

Much later in his life Isaac Newton would tell his friends that it was in 1666, 

while watching apples fall from the tree in his family garden, that made him 

speculate about earthly bodies and the moon being attracted by the same 

gravitational forces. What has made scholars skeptical is that it was in 1726, 

sixty years after the alleged event, and at a time when Newton was engaged in 

priority argument with other scientists. In 1666 he was developing ideas in 

mathematics and optics, and there is no documentary evidence about deeper 
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thoughts on the nature of gravitation. We also know from the history of science 

that such profound theoretical concepts rarely appear “out of the blue”.  

However, if we place the “falling apple event” thirteen years later, in 1679, 

it gains much more credibility. Newton had spent most of that summer and 

autumn at his family home in Lincolnshire. His mother had just died and he had 

to attend to family matters. There had been a lot of opportunities to see apples 

fall in the family garden. 

 

 

5. THE ELLIPTIC PATH 

The exchange of letters that followed with Hooke during the winter 1679-80 

shows that Newton had not yet achieved a deeper understanding of celestial 

mechanics. His first idea was to suggest, like the general scientific opinion of the 

time, that a falling object would, in principle, approach the centre of the earth in 

a spiral. Thanks to Hooke he came to realize, that it instead would rather follow 

an elliptic path (figure 4).  

 

 
 

Figure 4: Hooke’s and Newton’s agreed opinion about the elliptical trajectory of 

a falling body within the earth’s gravitational attraction. 

 

From this insight, that a falling object follows the same type of orbit as any 

of the planets around the Sun, it is not far-fetched to infer that the motions of 

these different bodies might be controlled by the same mechanism – universal 

gravitation. Still, even for a genius like Newton, it took a few more years to lead 

into conclusions in “Principia”.  
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6. GAUß AND LAPLACE 

More than a century later there was a renewed interest in the problem of 

the deflection of falling objects. The explanation of the flattening of the poles 

proved that the earth rotated and settled the dispute among scientists. But it 

was in some way an indirect proof.  

In 1803 an experiment, dropping iron pebbles in a 90 metre deep 

mineshaft, was conducted in Germany. The event attracted the interest of the 

scientific community and the 24-year German mathematician Carl Friedrich Gauß 

and the 53-year French mathematician Pierre Simon de Laplace volunteered to 

calculate the theoretically expected deflection. 

 
Fig.5: The hit-picture from the Schlebusch experiment 1803. A cross marks the 

theoretically derived deflection. 

 

 

There was an element of competition since Gauß had the year before 

managed to calculate the orbit of the newly discovered asteroid Ceres, something 

Laplace had deemed impossible. Both came up with the right answer by deriving 

the full three-dimensional equation for motions on a rotating earth.  

They specifically pointed out that the Coriolis-terms (as we call them)
2
 were 

responsible for the deflection. Gauß and Laplace were thereby the first scientists 

to contribute to the proof of the rotation of the earth some 50 years before 

Foucault’s famous pendulum experiment and to analyse correctly the relative 

motion in connection with rotation, 30 years before Coriolis’ mathematical paper 

(1835).  

 

                                                 
2. About Coriolis’s 1835 text, see BibNum analysis by A. Moatti, October 2011 (online). 

http://www.bibnum.education.fr/physique/mecanique/sur-les-equations-du-mouvement-relatif-des-systemes-de-corps
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7. LAPLACE’S DERIVATION – AND THE MODERN ONE 

What makes Laplace’s derivation difficult to follow for modern readers are 

 Lack of graphical illustrations. In figure 6, I have made an attempt to 

show visually what Laplace might have had in mind. 

 The mathematical notations of the time. Laplace for example defines 

the latitude as the angle from the earth’s rotational axis (co-latitude) 

instead as from the equatorial plane as we now do. 

 The use of Cartesian component forms. During the 19th century British, 

German and American physicists (not mathematicians) developed for 

practical reasons, to facilitate intuitive interpretations, the modern 

vectorial system. 

 In order to acquire as exact an estimation as possible, Laplace also 

wanted to take the possible effect of the air resistance into account. 

 Laplace wanted also, with as detailed calculations as possible, try to 

find if there was a possible minor southerly deflection. 

 

 
 

Figure 6: Laplace’s computational model of the Earth with a tower at co-latitude 

θ (corresponding to latitude 90-θ). 
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Figure 7: The modern spherical coordinate system with θ, λ and r as axes. Locally 

a Cartesian x, y and z coordinate system can be defined. 

 

Laplace derivation does essentially the same as today’s derivations, a 

coordinate transformation from an absolute frame of reference to a relative, 

rotating one. The rate of change of vector A as observed in the absolute frame of 

reference (what Laplace marked x, y and z) and in the relative frame of 

reference (by Laplace noted as reference frame X,Y and Z) rotating with an 

angular velocity Ω is described by the very powerful relation : 

AΩ
dt

dA

dt
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
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
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A can be any vector and we choose it to be the position vector r 
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or with v denoting the velocity 

rΩvv  relabs    (2b) 

We then apply (1) on the absolute velocity which yields 

abs
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Substituting (2b) into the right hand side of (3) gives 
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which yields 

 rΩΩvΩ
dt

dv

dt

dv














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


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abs 2
  (5) 

 

As seen in an absolute frame of reference: 

 rΩΩvΩaccacc  relrelabs 2    (6a) 

 

We are, however, interested in the accelerations seen from the relative 

frame of reference: 

 rΩΩvΩaccacc  relabsrel 2    (6b) 

 

where  2 Ω × vrel is the Coriolis force (per unit mass) pointing to the right of 

the motion and  Ω × Ω × r the centrifugal acceleration pointing outward, from 

the axis of rotation. 

 

@@@@@@@ 

 

Algebraically the three-dimensional components can be found by applying 

standard mathematics for cross products vectors 

kji

kji

vΩ





cos2sin2)sin2cos2(

sincos022

relrelrelrel

relrelrel

rel

uuvw

wvu





 (7) 

 

which yields the deflection of east-west or latitudinal motion (urel) in the 

north-south or meridional direction (j) as -2Ωurelsinφ and in the vertical direction 

(k) as 2Ωurelcosφ. The former is the well-known Coriolis effect for horizontal 

motion, the latter the so called “Eötvös effect” which explains why horizontal 

motions in the west or east directions make an object lighter or heavier. 

Meridional motion (vrel) will only be deflected in the east-west direction (i) with 

2Ωvrelsinφ and so will also vertical motion (wrel) with 2Ωwrelcosφ. 
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Figure 8: Laplace’s derivation of the deflection in component form (p. 112) The 

entities s, u and v correspond to distances, their first and second derivative to velocities 

and accelerations. The rotational velocity, corresponding to Ω in modern notation is here 

represented by n.  Laplace has also considered the possible influence due to friction 

which is seen in the K-terms. In the end the air friction has very little impact on the 

deflection. 

 

 

 

8. THE INTERPRETATION OF THIS -2 Ω × VREL  TERM 

The Coriolis Effect was discovered in the 19th century mathematicians and 

physicists have since then struggled to find a good intuitive explanation: why a 

“ 2”, and why a vectorial cross-product? So far nobody has really succeeded; so 

we must for the time being accept the term it at face value. On the other hand it 

is quite easy to understand what the -2 Ω × Vrel term means in physical terms. 

Thanks to the vector notation that was developed just for the purpose of 

facilitating physical, intuitive understanding this can be stated as:  

 

All relative motions Vrel, or components of relative motions, 

perpendicular to the rotational axis Ω will be deflected perpendicular 

both to the motion Vrel and the axis Ω to the right (for a counter 

clockwise rotation)
3
. And all motions, or components of motions, parallel 

to the rotational axis, will not be affected.  (expl. in fig.9).    

 

 

                                                 
3. This is the case for Earth rotation – from west to east seen from above is counter clockwise (see also fig. 9 
for that). 
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Figure 9: The relation between vectors a, b and their cross products a×b is 

facilitated through the “règle de la main droite” (left). From this it is easy to see 

(right) how the relative motion Vrel , a vector perpendicular to the rotational axis Ω is 

deflected to -2Ω×Vrel .  Motions or components of motions, parallel to the rotational axis 

will not be affected, as indicated by the white vector to the far left.  

 

@@@@@@@ 

More specifically, for vertical motion w, where w > 0 for upward motion (the 

time derivative of the distance to the Earth’s centre) the velocity for free fall 

(w<0) can be written w=  g.t This can be split up into one component 

w·sinφ·g·t parallel to the Earth’s axis, and another component, w·cosφ·g·t, 

perpendicular to it. Only the second component will be deflected to the right by 

the Coriolis effect. 

 
Fig. 10: The velocity of a falling body –wg can be split up into one component 

perpendicular to the Earth’s axis, another parallel to it. The first will be fully 

deflected, the second not. 
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9. DEFLECTION ACCORDING TO THE CORIOLIS EFFECT 

We can now, like Laplace (and Gauß) in 1803, calculate the deflection of the 

falling object. We first note that the time (t) it takes for an object to fall from an 

elevation (h) is 

g

h
t

2


     (8a) 

and it will then increase and when hitting the ground have a velocity 

 

V0 = g·t     (8b) 

 

which can also be expressed as  

 

hgV 20       (8c) 

or 

g

V
h

2

0
     (8d) 

To gain clarity the derivations will be conducted for falls at the equator φ=0, 

where sinφ=0 and cosφ=1. For any calculation away from the equator, Ω can 

easily be replaced by Ωcosφ 

 

 

 

For this vertically moving object we have, according to the cross product 

display in section 8 a deflection 2Ω×w, with w = g·t; this can also be written 

as a second derivative of the position S 

gt
dt

dS
 2

2

2

     (9a) 

Integrating (9a) over the time of the fall from a height h, with the initial 

horizontal velocity V0, yields to 

2
0 gtV

dt

dS


     (9b) 
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Since the initial velocity V0 = 0, further integration yields 

3

3

0
gt

SS 
     (9c) 

Since our reference point is the base of the tower S0 = 0 and (8a) yields 

38

3 g

h
S




     (10) 

This corresponds exactly to Laplace’s result p.115 (given that we took sin 

=1): 

 

This is again a rather mathematical explanation of the deflection with not 

much physical “feel”. But, as often is the case in physics, there is more than one 

mathematical derivation for the same process or mechanism. We will make 

derivations which Isaac Newton and Johannes Kepler would have been able to do 

if they had come to think of it!  

While the derivation of the deflection using the Coriolis effect was conducted 

in a relative frame of reference where we were positioned on the Earth and 

followed its rotation, we will now move into an absolute frame of reference, 

outside the Earth and look at the motion of the falling objects while they are 

transported around by the earth rotation. 

 

10 . DEFLECTION ACCORDING TO NEWTON’S LAWS 

For our first “Newtonian” derivation we make use of the insight, acquired 

already by the generation before Newton, that due to the curvature of the Earth 

the object will be affected by a component of gravity g directed “backward”, 

which will delay the object’s motion compared to the simplistic model in figure 1. 
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Fig. 11: In contrast to figure 1 where the gravitational force lines were parallel 

and the trajectory a parable, for radially converging force lines the trajectory 

becomes in principle an ellipse. 

 

 

 

This backward horizontal acceleration can be simplified because of the 

smallness of the angle Ω·t 

 

2

2

sin
dt

Sd
tgtga 

      (11a) 

which integrated yields 

 

 

      

    (11b) 

 

 

where U = Ω (R+h) is the Earth rotation at the elevation h. Finally we have 

 

 

      (11c) 

 6
)(

3tg
thRS




2
)(

2

22 tg
hR

tg
U

dt

dS 




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But a point at the ground, towards which the body is falling, is moving with 

a speed U0 = Ω·R < U. This velocity difference yields U - U0 = Ωh and when the 

body strikes the ground it undershoots by ΔS: 

 

 

(11d) 

 

Inserting (8a) into (11d) yields 

g

h

g

h

g

h
hS

33 8

3

8

6

2 



   (12) 

where the first term is the distance covered by the tower and the second 

term the slight deflection back from the tower. 

If only Newton had more stubbornly considered the problem of the 

deflection of his famous falling apples, he would have been able to derive 

equation (12) already in the late 17th century and maybe also discovered the 

Coriolis effect. But he might not have been the first. Indeed it could have been 

done already some fifty years before by Johannes Kepler.  

 

 

11 . DEFLECTION ACCORDING TO KEPLER’S 2ND (AREA) LAW 

Kepler’s 2nd Law, that radius vector in equal times covers equal areas, was 

for long thought only to apply to celestial bodies, such as planets or comets. For 

most of the 1600s this law was not widely understood or accepted, not even by 

Isaac Newton. It was only during his work on “Principia” in the mid-1680s that he 

came to realise its validity, but also its shortcomings. It was, for example, only 

when he questioned one of the fundamental parts of Kepler’s theory (that the 

trajectory of an orbiting planet has its focus, not in the centre of the sun as 

stated by Kepler, but in the common centre of mass of the sun and the orbiting 

planet), that he was able to formulate his third law. 

Kepler had never extended his planetary laws to the neighbourhood of the 

Earth. It was not until the late 18th century that it was realised that his Second 

Law, the “Law of areas" could also be applied to also earthly objects and as such 

it became known as “Conservation of Angular Momentum”. 

6

3tg
thS



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Figure 12a: Seen from outside the falling object follows the trajectory DGB 

while the top of the tower follows DE, and the base AC. 12b: Any parable 

inscribed in a rectangle will cover 2/3 of its area. 

 

Our dropped object follows an absolute trajectory DGB while the base of the 

tower follows the trajectory AC (fig. 12a). According to Kepler’s 2nd law the two 

areas ODBO (hatched blue and violet) and ODEO (hatched red and violet) are 

equal, and it is easily seen that the falling object moves ahead of the tower by 

the distance CB=ΔS. 

Since the two motions share the area ODGO (hatched violet), the two not-

shared, “leftover” areas DEGD (hatched only red) and area OGBO (hatched only 

blue) are equal in size. We then add to them the (white) area GEFB making area 

DFBD = area OEFO.  

Considering h << R and the small angles involved (much smaller than in the 

figure) we approximate BG ≈ BC ≈ FE ≈ ΔS, essentially disregarding the area 

GBC ≈ 0 and treating GEFB as a rectangle with area ≈ h·ΔS and area OEFO ≈ ΔS 

(h+R)/2.  

From our previous discussion (fig. 4), we know that the trajectory is an 

ellipse, but for the very short duration we are dealing with now, just a handful of 

seconds, we can treat the trajectory as a parable. 

For the same reason we can treat DFBA as an rectangle with an area 

=(R+h)Ω·t. From the general rule that for a parable inscribed in a rectangle 2/3 

of the rectangle’s area is inside the parable, 1/3 outside (fig. 12b), we can 

approximately calculate the area DFBD = h·(R+h)·Ω·t/3, and we have  
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3

)(

2

)( thRhShR 




   (13a) 

which yields again with (8) 

g

hth
S

38

33

2 





    (13b) 

 

 

 

12. LAPLACE EXTENSION FOR DEFLECTION OF VERTICALLY PROJECTED 

OBJECTS  

When Laplace edited his Collected Works in 1805, he slightly modified his 

1803 article, also including an analysis of the deflection of an object (like a 

cannonball) thrown vertically straight upward. This version can be found under 

the reference P.S.Laplace, De la chute des corps qui tombent d’une grande 

hauteur, Traité de Mécanique Céleste, T IV, Seconde Partie, Livre X, p. 294-305.
4
 

 
  

Such experiments were indeed conducted in the early 1600’s. In 1627 a 

German mathematician Joseph Furtenbach from Ulm fired cannonballs vertically 

and, being sure that they would not come straight down, immediately after the 

shots climbed up and sat on the cannon’s muzzle. The same experiment was 

                                                 
4. The 1805 version (Google Books) corresponds in his first part (§15, p. 294-302) to the 1803 article (with 
some revisions); the second part (§16, p. 302-305) is an addendum where Laplace discusses the problem of 
the deflection. 

http://books.google.fr/books?id=nJOjEB0wUSoC&pg=PA294&dq=P.S.Laplace,+De+la+chute+des+corps+qui+tombent+d%E2%80%99une+grande+hauteur,+Trait%C3%A9+de+M%C3%A9chanique+C%C3%A9lest&hl=fr&sa=X&ei=ATv7U4vhEMLgatCTgYAD&ved=0CCIQ6AEwAA#v=onepage&q&f=false
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carried out 1634 also by Mersenne, at the request of Descartes. Galileo’s 

students in Florence conducted in the 1650’s an experiment where the cannon 

was mounted on a wagon drawn by six horses in a rapid speed to see if the 

motion of the wagon would make the balls drop differently compared to when the 

wagon was at rest.  

The results were generally inconclusive. Cannonballs were not uncommonly 

lost, and this gave rise to the belief that they broke away from the earth’s 

gravity and travelled into space never to return. It is more likely that they were 

carried away by the strong winds often found high up in the atmosphere. 

@@@@@@@ 

We now repeat this derivation in the “Coriolian” way Laplace did in 1803 and 

then how it could have been done in a “Newtonian” and “Keplerian” fashion. First 

the “Coriolian” with an initial upward velocity V0 and where the Coriolis deflection 

at time t is: 

)(2 02

2

gtV
dt

dS


    (14a) 

when integrated becomes 
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   (14b) 

and finally 
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   (14c) 

The expression of time as a function of V0 as presented in (8b) must be 

doubled since the time it takes for the projectile to reach height h and then 

descend back to earth is double compared to a fall from height h. This makes 

     (15) 

and we get a deflection 
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Since S < 0, the deflection is to the west. This result needs a further 

explanation. For a projectile fired upward in the air and then falling back, one 

would expect that the deflection during the falling back part of the motion should 

cancel the deflection during the upward part. 

 

 

 

Figure 13: The relative trajectory, relative to the cannon and the ground, of a vertically 

projected object with initial velocity V0. Left: Why is the object not deflected back when it 

falls back to the Earth, as would an object released from rest at the same height? Right: 

An object released from the same height would fall eastward, but the eastward deflection 

is not large enough to compensate for the initial westerly deflection. Further, since the 

projected body is moving westward at its highest point and the released body is at rest, 

this further adds to their separation. 

 

 

 

Let us imagine that our upward projected object, when reaching its highest 

point, by some coincidence, should be close to another projectile, released from 

rest into a free fall. Since both are on their way down, we might expect them to 

be close and follow each other. But the projected object is at this highest point, 

due to the Coriolis effect, not at rest but in horizontal motion to the west. 

Further, the eastward deflection of the objects starting from rest will anyhow 

only be half of the westward deflection it is supposed to compensate for (fig. 13).  
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13. THE DEFLECTION OF VERTICALLY PROJECTED OBJECTS ACCORDING TO 

NEWTON’S LAWS 

And now, in an absolute frame of reference, according to Newton’s laws, the 

backward deflection due to the curvature of the earth’s surface as previously 

discussed: 

tg
dt

Sd


2

2

   (17a) 

   (17b) 

   (17c) 

With the expression for the time (15) as above 

  (18) 

So while the cannon travels a distance ΩRt carried by the Earth rotation, the 

ball falls slightly behind (S < ΩRt). 

 

 

 

 

14. THE DEFLECTION OF VERTICALLY PROJECTED OBJECTS ACCORDING TO 

KEPLER’S 2ND
 LAW 

Using Kepler’s 2nd Law of equal areas we can immediately see that the 

position where the object is projected vertically upward will overtake the object 

itself since the area OADBO = area OACO. Both have the area OABO (violet)  in 

common so we can concentrate on (red) area OBCD=R·ΔS/2 and (blue) area 

ADBA=2Ω·R·t·h/3 which, although an ellipse, can be approximated as a parable 

inscribed in a rectangle with base=2Ω·R·t and height=h. 
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Figure 14: The trajectory of the vertically projected body ADB seen from an 

absolute frame of reference. During the same time the position of the launch (the 

“cannon”) has travelled the longer distance ABC. In both cases the “radius vector” covers 

equal areas OADB=OABC. The trajectory ADB is in reality an ellipse but can here be 

approximated by a parable. 

 

Using (8a) and (15) we integrate over two time periods we find once again 

the same formula:  

 

In those days a cannon had a typical exit velocity (V0) of 400 m/s. With an 

angle of 45° this would mean both a horizontal velocity and a vertical initial 

velocity V0H = V0V = 283 m/s. It will take the grenade 29 seconds to reach its 

highest point just above 4 km and almost 58 seconds to reach its target 

(assuming no air friction) which will be little more than 16 km away. The grenade 

will undershoot the target by 45 m. So far in the equator region, where 2Ωsinφ is 

null, and we therefore do not have any horizontal, sideway, deflection.  

If we now move to a north Italian latitude of 43° where Ωcosφ = 0.53·10-4 

/sec the projectile will undershoot the target by 17 m. But with a value for 

2Ωsinφ = 1.00·10-4 /sec there will be a sideways deflection of 47 m. 
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15. OTHER ASPECTS OF LAPLACE’S DERIVATIONS 

As mentioned in the introduction, Laplace made his derivation very 

consciously in order to also establish the effects of friction and any possible 

southerly deflection. We will not go into these details, only mention that friction 

according to Laplace (and subsequent derivations) does not seem to have any 

significant impact on the deflection. 

Concerning a possible southerly, or rather equatorward deflection, was, as 

we can read in Laplace’s article, a matter of controversy already 200 years ago, 

Laplace’s calculations showed no such deflection but Gauß’ calculations did; this 

contributed to keep the issue controversial into our times. Part of the problem is 

to define “southerly”; is it in relation to the geographical latitude or the 

geocentric? Laplace and Gauss were not aware of later geodetic work that 

defined the shape of the earth more exactly than was the case in their times. 

Today’s agreed wisdom is that the deflection does not exist or is so small that it 

is over-shadowed by necessary mathematical approximations. Finally, 

experiments in modern times have so far not found any detectable southerly 

deflection. 

 

 

16. WHY DID IT TAKE ALMOST 200 YEARS? 

We have thus shown that correct expressions for the deflection of a falling 

object could have been derived already 100 years earlier by Newton or almost 

200 years earlier by Kepler. So why didn’t they do it? 

In Newton’s case it was because he was never asked. Deflection of falling 

bodies had been, as we have seen, high on the scientific agenda in the 17th 

century, but simplistic calculations (fig. 1) had yielded very small values. Hooke’s 

experiment had shown a very great spread of measurements and the matter had 

been regarded as impossible to pursue scientifically. 

But also Benzenberg’s measurements (fig. 5) showed large spread and so 

did Ferdinand Reich’s measurements in a later experiment 1834. By that time the 

understanding of error statistics had developed, and it was seen a natural thing 

to compute averages of measurements. Well into the late 18th century scientists, 

in particular astronomers, had the habit of trying to find out which of several 

observations or measurements they had done, was “the best” one. Combining 

observations would, so it was thought, add the errors. 
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Thanks to Laplace, Gauß, Legendre
5
 and others, it become established that 

due to the random nature of errors, combining observation would to a large 

degree cancel out the errors yielding averages that would be more accurate than 

any randomly chosen observation. 

The reason why Kepler would not have been able to apply his 2nd law on the 

problem was because it was considered to apply only to celestial motions, not 

terrestrial. That became clear only after the publication of Newton’s “Principia”. 

Before that there were even doubts if the law was correct, since it had been 

derived from observations from only one planet, Mars, with an unusually 

eccentric orbit. 

Finally, Laplace and Gauß managed to calculate the deflection after having 

derived what we now regard as the “Coriolis Effect”, some 30 years before 

Coriolis. Why did they, or one of them, not get the credit of later generations? 

One reason might be that Coriolis’s work dealt with the dynamics of machines 

and appeared as less far-fetched than Laplace’s and Gauß’s. But more likely, the 

interest in the behaviour of relative motion in rotating system had its 

“breakthrough” after Foucault’s famous experiment in 1851. In the ensuing 

discussions Coriolis’s 1835 paper happened to be more in the scientists mind 

because the attention it had contracted a few years earlier. French 

mathematician Joseph Bertrand had 1847-48 claimed that Coriolis had 

plagiarized results already derived by Alexis Clairault some 100 years earlier. 

There might be reasons to come back to this story in a later contribution. 

 

 

  

 
(August 2014) 

 
 

                                                 
5. About Legendre and his method of least squares for the approximate solution of overdetermined systems, 
see BibNum analysis by J.-J. Samueli, August 2010 (online). 

http://www.bibnum.education.fr/mathematiques/algebre/legendre-et-la-methode-des-moindres-carres

