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ABSTRACT: The problems of communicating essential processes in dynamic meteorology are discussed, with examples. It
is argued that the difficulty in conveying the concepts is not a result of the non-linearity of atmospheric and ocean motions,
but their counter-intuitive nature. Although this might motivate the highly mathematical way dynamic meteorology is
communicated, issues arise when the mathematics is poorly or wrongly interpreted. It is suggested that communication
would be improved by laboratory experiments and observational evidence, while an historical background could help
explain why a particular phenomenon is important.  Crown Copyright 2010. Reproduced with the permission of the
Controller of HMSO. Published by John Wiley & Sons, Ltd
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‘Science can be beautiful, amazing, the best way of
trying to understand the world. But it is difficult. . .
if an idea fits with common sense, then it is almost
certainly scientifically false. . . The world is just not
built on a common-sense basis.’ Lewis Wolpart, author
of ‘The Unnatural Nature of Science’ (1994) in ‘The
Independent’ 9 February 2005

1. Introduction

To meteorologists, whether they are modellers or fore-
casters, a good, intuitive, qualitative and physical grasp
of dynamic meteorology, and in particular the general cir-
culation of the atmosphere, is crucial, not only to detect
possible shortcomings in their models but also to prevent
unreflective discarding of unexpected results.

In the meteorological community, in particular in the
United States, there is a growing concern that there is a
general need for scientists and experts in communication
to work together to improve public knowledge and under-
standing of geosciences, mainly in ocean-atmospheric
circulation and interaction (Pandya et al., 2004; Roebber,
2005; Schultz, 2009). This is particularly important since
students in introductory meteorology courses at universi-
ties are often the future leaders in the fields of business,
journalism and education (Knox and Ackerman, 2005).

The dynamics of the general circulation of the atmo-
sphere and the ocean is, however, considered to be a
difficult subject because of its highly mathematical char-
acter. The late Professor Richard Reed at the University
of Washington, Seattle, once wittily commented (Reed,
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1990): ‘The general success of the forecasts in data-rich
areas bears witness to the fact that the cyclogenetical pro-
cess is indeed now well understood – at least by the com-
puter!’. In contrast, Edward Lorenz consistently argued
that by applying equations already known to be precise,
will not by itself increase our understanding of the atmo-
sphere (Lorenz, 1960, 1984).

It will be argued here that the problem of understand-
ing and communicating dynamic meteorology does not
mainly lie in its complicated non-linear mathematics but
in its highly counter-intuitive nature. The motions of the
atmosphere and oceans are just not built on a common
sense basis.

2. Some examples of the counter intuitive nature
of dynamic meteorology

The discrepancy between intuitive ‘common sense’ and
mathematics is not only a problem in dynamic meteo-
rology. Studies of American university students taking
introductory physics found, for example, that students
tended to believe that a constant force is needed to pro-
duce a constant motion and the absence of forces will
keep the object at rest or slow it down. These erro-
neous beliefs were based on a common sense experience
of daily life, where frictional effects are important (see
McDermott, 1998, for further references). In dynamic
meteorology, non-intuitive processes not only involve
frictionless motion but also the behaviour of stratified
fluids and rotational effects.

2.1. Frictional and non-frictional motion

Meteorologists’ ‘common sense’ is often based more on
surface maps than upper-air maps. Since much of the
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motion in the upper atmosphere is essentially friction-
less, it may come as a surprise to see how the upper
winds, in contrast to the surface winds, almost as often
move against the pressure gradient force, towards higher
pressure (or geopotential) than with the pressure gradi-
ent force, towards lower pressure (or geopotential). When
friction indeed is involved it is almost always taken for
granted in the meteorological literature that it is counter-
parallel to the flow. This again agrees with everyday
experience, but it is only true for solid objects, not nec-
essarily for gases and liquids where the deviation can be
substantial (Arya, 1985, 1988).

2.2. Stratified fluids and gases

The following counter-intuitive and illuminating experi-
ment example was enthusiastically promoted by the late
oceanographer Adrian Gill (1937–1986) (Gill, 1982). A
glass jar is one-third filled with vinegar. When the jar is
moved back and forth horizontally, with a certain regular
pace, the vinegar surface oscillates. If the glass jar is then
filled by another one-third, with oil on top of the vinegar,
and is moved in the same way, will the vinegar sur-
face, now interfacing the oil above, oscillate with larger,
smaller or the same amplitude? From a common sense
notion one would expect that it will oscillate with less
amplitude because of the burden of the oil above. In real-
ity, the opposite happens: the vinegar surface oscillates
with significantly larger amplitudes (Figure 1). When the
burden of oil is lessened (its amount or density reduced)
the vinegar will, paradoxically, oscillate less.

2.3. Rotation

Motion under rotation is famously counter-intuitive
as demonstrations of gyroscopes and spinning bicycle
wheels demonstrate. It is not difficult to be logically-
mathematically convinced that, for example, a spinning

Figure 1. Two glass jars with vinegar only (left) and vinegar and oil
(right) are moved horizontally backward and forward with the same
pace. When the vinegar is interfacing air above it oscillates with less

amplitude than when it is interfacing the oil above.

top will not easily fall over. Still, according to debates in
the teacher-oriented American Journal of Physics, univer-
sity students still want to know ‘what is really going on’.

The same seems to be true for meteorological students.
McNoldy et al. (2003) noted that, although textbooks
in dynamic meteorology provided detailed mathemati-
cal arguments, most meteorological students did not truly
grasp the concepts until they were also shown them as
laboratory experiments. Roebber (2005) found that the
lack of understanding was often related to the mathe-
matics of the equations of motion, which confirms the
observation by Stommel and Moore (1989) that students
regard the Coriolis Effect as ‘mysterious’ and a result of
‘formal mathematical manipulations’. A frustrated Scan-
dinavian colleague once told me: ‘the Coriolis Effect can-
not be understood, only mathematically derived’ (Peder
Aakjœr, personal communication, 1999). This brings up
the role of mathematics in communicating physics in
general and dynamic meteorology in particular (see also
Appendix A).

3. The role of mathematics in physics
communication

Considering the counter intuitive nature of dynamic
meteorology, it is evident that successful communication
must be based on a correct mathematical basis. There
are, however, several reasons why purely mathematical
descriptions are insufficient.

3.1. Mathematics: the easy bit?

The French physicist and 1991 Nobel Prize laureate
Gilles de Gennes (1932–2007) caused controversy in his
homeland when he claimed that education in physics was
too mathematical and that current programmes in physics
were no more than mathematics in disguise. Many might
agree with him, but perhaps not for the reason de Gennes
brought forward. His argument was that ‘mathematics
is the easiest bit in physics’ (de Gennes, 1994). The
ability to derive a certain mathematical equation is a
necessary condition, a first easy step to acquire a physical
understanding, but it is not sufficient. The difficult part,
according to de Gennes, is to understand what the
mathematics means, how it relates to observations and
how it connects with other theories.

Most controversial was de Gennes’ opinion that the
over-emphasis on mathematics in physics education was
motivated by pure convenience: to make it easier for
the teachers to fulfill their lecturing obligations. They
could also mark exams more quickly if the problems were
deductive rather than inductive, i.e. about deriving math-
ematical expressions rather than interpreting observed
phenomena in mathematical terms.

Roebber (2005) found a similar tension in meteorol-
ogy between students and faculty teachers. One student
told him in an interview: ‘We did equations all the time,
derivations constantly, so we would think about why we
were doing this. Spent 5 days doing a derivation, all
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math all the time, and wondering why we were doing
that’. In the same vein, Schultz (2009) points out that
students tend to be goal-seeking learners, wanting to
see connections between theory and real-world appli-
cations. In contrast, professors tend to be knowledge-
seeking learners, preferring theory and learning for the
sake of learning. Unfortunately, the curriculum in most
atmospheric-science programs tends to be written from a
knowledge-seeking perspective.

3.2. The relation between mathematics and physics

Richard Feynman (1918–1988) was another physicist
and Nobel Laureate (and excellent science communica-
tor) who thought much about the relation between math-
ematics and physics. In his book on the character of
physical law, he devoted a chapter to this one issue (Feyn-
man, 1992). Even though he argued strongly that if one
wants to learn about nature it is necessary ‘to understand
the language that she speaks in’, namely mathematics, he
also stressed the importance of not confusing mathemat-
ics and physics.

Mathematics is a way of going from one set of
statements to another along lines of abstract reasoning
already prepared by the mathematicians. Mathematicians
are, however, only dealing with the structure of reasoning
and are not necessarily concerned about possible physical
interpretations. ‘But the physicist has meaning to all his
phrases. That is a very important thing that a lot of people
who come to physics by way of mathematics do not
appreciate. Physics is not mathematics, and mathematics
is not physics. One helps the other’ (Feynman, 1992).

So, although Nature speaks in mathematical terms,
humans also speak in their different tongues: ‘In physics
you have to have an understanding of the connection of
words with the real world. It is necessary at the end to
translate what you have figured out into English, into
the words, into the blocks of copper and glass you are
going to experiment with. Only in that way can you find
out whether the consequences are true. This is a problem
which is not a problem of mathematics at all’ (Feynman,
1992).

3.3. Loose or unclear definitions

The discrepancy between colloquial language and a strict
scientific nomenclature is a problem in communicating
dynamic meteorology. So, for example, it is scientifically
correct to say that the Coriolis force is ‘fictitious’, but it
is therefore wrong, as suggested by Emmanuel (2005)
and explicitly stated by Walker (2007), to suggest that it
is an ‘optical illusion’. In elementary mechanics ‘work’
has an exact meaning of conversion between potential
and kinetic energy. It is, therefore, scientifically correct
to say that the Coriolis force does not ‘do work’, but it is
wrong to infer from this that it doesn’t ‘do anything’.
‘The whole definition of work in physics may seem
strange to beginners since it is a matter of everyday
domestic experience that one expends the most effort,

and accumulates the most frustration, when failing to
move objects such as pianos and bottle tops! As so often
happens, the root of the problems is that the word chosen
to convey a technically precise meaning also has a much
wider (and often more vivid) connotation outside physics’
(Andy White, personal communication, 11 November
1998).

The word ‘forcing’ is used in many different contexts
in dynamic meteorology, in contexts which do not always
agree with its colloquial meaning. Modifying the vorticity
in one grid point, ‘forces’ the winds to change in a
wide area. Motions in the stratosphere are said to ‘force’
motions in the troposphere (as with the oil the vinegar)
where perhaps ‘interaction’ would be more appropriate.

3.4. Different mathematical ways to explain the same
phenomenon

Another one of Feynman’s messages is that the same
physical processes can often be understood and commu-
nicated in different mathematical ways (Feynman, 1992).
Gravitation can, for example, be mathematically under-
stood in (at least) three ways: as action-at-a-distance, as
the consequence of a potential field, or from a variational
principle. These are all mathematically equivalent, but
conceptually and pedagogically very different (Feynman,
1992). An illuminating geophysical example, although
for simplicity a non-meteorological one, is the interaction
between the Earth and the Moon.

The sum of the Moon’s orbital momentum and the
Earth’s spin can be considered constant (disregarding the
Sun and the other planets). Since the rotation of the
Earth is slowing down, mainly because of the friction
between the Earth and the tides, the Earth’s spin angular
momentum is slowly decreasing. It can be said that ‘in
order to’ conserve the system’s total angular momentum,
the Moon’s orbital angular momentum ‘has to’ increase
by a transport of angular momentum from the Earth to
the Moon. The Moon will thereby slowly go out in a
wider orbit.

This explanation, although mathematically impeccable,
may leave the audience unsatisfied and trigger follow-
up questions such as: how does the Moon ‘know’ that
the Earth is spinning down; how does it ‘know’ it has
to orbit faster, and, how fast is the angular momentum
transported?

The answer to these questions is to be sought along
quite different lines: it is the Earth’s tidal water bulge
that accelerates the Moon. Due to the friction between
the surface of the Earth and the ocean water, the Earth’s
ocean tidal bulge does not point exactly towards the
Moon, but slightly ahead. Therefore, the gravitational
attraction felt by the Moon is not symmetrical but has
a small forward-directed component. This will accelerate
the Moon into a wider orbit by about 4 cm per year.
During this process the system’s total angular momentum
is conserved (Figure 2).

While the first explanation enables tractable calcula-
tions of where the moon might be in, say, 100 000 years,
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Figure 2. The Moon–Earth system with the ocean tidal bulge pointing
slightly ahead of the moon’s position.

the same calculation using the second explanation would
demand enormous and, perhaps unattainable, computer
resources. Although both explanations are scientifically
equivalent, one provides means for calculations, the other
an understanding of what is ‘going on’.

3.5. The correct interpretation of mathematics

Mathematics is a powerful tool of communication
because it saves enormous amounts of reflection and
stores immense amounts of knowledge, but all this can
break down if the mathematics is accompanied with erro-
neous or misleading qualitative interpretations (graphical
or verbal).

Take, for example, the illustration of air moving under
a constant pressure gradient, found in many textbooks
and Internet sites. The equation of motion accelerated by
a constant meridional pressure gradient force Py is, in a
Cartesian coordinate system:

du

dt
− f v = 0

dv

dt
+ f u = Py (1)

Further manipulations yield the positions x and y along
mathematically defined cycloid trajectories. However,

these trajectories are not, as often depicted, like a well-
behaved motorist entering the motorway adhering to the
agreed geostrophic speed restrictions. They are rather like
an aggressive motorist, who violates the speed restrictions
and also swerves from one side of the road to the other
(Figure 3).

The correct picture is a more or less realistic image of
the process of small scale nocturnal jets (Persson, 2002a)
and, applied on the large-scale unperturbed jet streams,
explains their cycloid or ‘banana’ shape (Persson, 2002b,
2003b, 2004). What might at first to an audience appear
as an artificial or abstract mathematical exercise turns
out in the end to be more realistic and useful than the
opportune ‘common sense’ image.

Other sources of confusion between mathematics
and common sense involve ignoring the distinction
between streamlines and trajectories, between Eulerian
and Lagrangian averaging or treating averages or bud-
gets as if they necessarily also represented instantaneous
processes (Persson, 1998, 2002d).

4. Suggestions for efficient communication

Chapter 6.2 on super-imposed fluids in Adrian Gill’s
book sets out the recipe for a successful commu-
nication of complicated and non-intuitive processes:
(1) a solid mathematical-theoretical basis, (2) laboratory
experiments, (3) observational studies, and, (4) historical
background, to, provide an intuitive ‘feel’ for the under-
lying dynamics. Another example covering the same sub-
ject is found in Walker (1991). Their approach is in line
with the conclusions in the American studies, namely that
‘the study of a new topic should begin by helping stu-
dents develop a qualitative understanding of the material
from direct experience or observations when possible’
(McDermott, 1998).

The mathematical basis: Good communication demands
that the receivers are given proper motivation. The
insights gained by deriving mathematical expressions,
therefore, depend on how they are conducted. Equally
important is a careful interpretation of what the equations
actually tell us, or do not tell us. If there is more than
one mathematical way to understand a process this will
improve communication and deepen understanding.

Figure 3. Two images of an air parcel accelerated by a constant pressure gradient. Left: The common, but erroneous and misleading, one where
the wind smoothly attains the geostrophic speed and direction. Right: In reality, and in accordance with the mathematics, the air parcel will,
counter-intuitively, be torn between the ‘straight’ pressure gradient force and the ‘curved’ Coriolis force, to follow a cycloid path. It will reach
double geostrophic speed and, being highly super-geostrophic, be moved by the Coriolis force to the right, towards higher pressure and decelerate.
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Laboratory experiments: Observations and/or laboratory
experiments help to widen and enrich our common sense
(Illari et al., 2009). Experiments with fluids are more eas-
ily conducted and visualized than experiments involving
gases. The distinguished British fluid dynamicist H. P.
Greenspan began his mathematically rigorous textbook
with the opinion that ‘[laboratory] demonstrations really
give the subject life and their role in developing intuition
cannot be overestimated’ (Greenspan, 1968; McNoldy
et al., 2003, author’s italics).

Observational evidence: Dynamic meteorology and phys-
ical oceanography are highly related and observations
from the oceans can illuminate atmospheric processes and
vice versa (Persson, 2001c). It is also interesting to note
that oceanographic textbooks and articles make more use
of observational evidence than similar texts in dynamic
meteorology, despite the difficult problem in oceanogra-
phy of acquiring observations.

Historical background : Historical storytelling, as sug-
gested by Knox and Croft (1997), is not only entertaining,
it can give additional information and above all makes
sense of abstract theory. It provides an answer to why
a particular phenomenon is important or interesting as
new ideas and how to look at them. Gill (1982) and
Walker (1991) underpin their narratives by providing an
historic background, from Benjamin Franklin crossing the
Atlantic in 1762 to how Nansen, Bjerknes and Ekman
solved the ‘dead water’ mystery in 1904.

5. Summary

Meteorologists, as other scientists, must often discuss
their results and share their knowledge with a wide audi-
ence of non-experts. This is particularly important in the
current situation when the focus is on climate change.
Both dynamic meteorology and physical oceanography
are branches of fluid mechanics and belong to what is
often called ‘classical’ mechanics, but few people have
any first hand experience of the behaviour of stratified flu-
ids or gases moving frictionless under rotation, which is
often as difficult to intuitively comprehend and communi-
cate as ‘modern’ physics. Communication can, however,
be improved by upgrading our common sense, by making
use of observations, laboratory experiments and histori-
cal background material, based on a correct interpretation
of the underlying mathematics. The latter is important,
since any skillful communication can be ruined if there
are logical inconsistencies between mathematical expres-
sions and physical experiments or observations.

Finally, good communication is not only of interest and
value to non-experts but also to the experts themselves.
Modern physicists have put much effort into explaining
quantum mechanics and relativity to the interested non-
expert. There have even been attempts to communicate
how it would feel to be sucked into a black hole,
what the universe looked like one second after the

Big Bang and how to orientate oneself in an 11-
dimensional string theory world. The scientific experts
have done this not only from a sense of democratic
and pedagogic responsibility, but also with an intent to
understand their subject better. Albert Einstein, who spent
a lot of time communicating his revolutionizing ideas
to non-experts, allegedly said that ‘You do not really
understand something unless you can explain it to your
grandmother’.

Acknowledgements

This article is based on discussions over the years
with colleagues; in particular at the European Centre
for Medium-Range Weather Forecasts (ECMWF) and
colleagues at the Met Office in Bracknell and Exeter.
The author has also benefited from discussions with
students on training courses and workshops organized by
ECMWF, World Meteorological Organisation, University
of Trento, the Nordic meteorological services and others.
The author is also deeply indebted to Professor Norman
A. Phillips and Professor George W. Platzman, who, as
few others, have been able to reveal and communicate
to me the counter-intuitive secrets of the atmosphere.
Carla Karlström-Eggertsson, Haldo Vedin and the late
Hans Alexandersson, at SMHI encouraged my research
in this topic during many years.

Appendix A: the Coriolis Force Communicated.

This appendix exemplifies, from the author’s experience,
how mathematics, observations, experiments and history
can be interlinked to provide a clear and consistent
presentation of the Coriolis Effect. The main ambitions
have been not only to counter the common notion that it
is a ‘mysterious’ force resulting from a series of ‘formal
manipulations’, but also, as much as possible to show
how correct interpretations may unveil the complexities
of the motions of the atmosphere and oceans by tending
to confine or constrain moving air and water within
relatively small areas, while at the same time pushing
it westwards, against the Earth’s rotation.

A.1. History

In the 1830s, in the midst of the industrial revolution,
the French mathematician and engineer Gaspard Gustave
Coriolis (1792–1843) wanted to calculate the centrifugal
action on machines with internal parts moving relative to
the rotation. He found that one had to take account of
an addition to the centrifugal force, an extra force, which
came to carry his name (Persson, 1998, 2000a).

A.1.1. Sideways deflection of vertical motion

The interest in what we today call the Coriolis Effect
began more than 100 years before Coriolis was born. In
the seventeenth century scientists discussed the possible
sideways deflection of falling objects as proof that the
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Earth was rotating. Newton was heavily engaged and
there are reasons to believe that the incident with the
falling apple relates to these discussions (Persson, 2003a).
Early in the nineteenth century both Laplace and Gauss
were involved in a contest to predict this deflection in an
experiment of dropping stones in deep mine shafts.

A.1.2. Vertical deflection of horizontal motion

Coriolis made no reference to any geophysical appli-
cation but the Hungarian nobleman and geophysicist
Lorand Eötvös (1848–1919) applied Coriolis theory to
the problem of measuring the gravitational attraction by
the Earth. This cannot be measured directly, only through
the Earth’s gravity, the combined affect of gravitation
and the centrifugal effect due to the Earth’s rotation. The
latter, in turn, depends on whether the observer is station-
ary or not. The vertical component of the Coriolis Effect
has then been known as ‘The Eötvös Effect’ (Persson,
2000b).

A.1.3. Sideways deflection of horizontal motion

The realization of the sideways deflection of horizontal
motion only came with Léon Foucault’s 1851 pendu-
lum demonstration in Paris. The French mathematician
Poisson, who had calculated the deflective effect of the
Earth’s rotation on artillery grenades, was affirmative that
pendulums would not be affected. Foucault’s experiment
proved him wrong and this initiated studies of the possi-
ble effect of the Earth’s rotation on moving objects such
as rivers, trains, winds and ocean currents.

A.2. The mathematics of the Coriolis Effect

The mathematical derivation of the Coriolis force is
perhaps most convincingly and elegantly performed using
vector algebra (French, 1971; Pedlosky, 1979; Gill,
1982). It highlights its three-dimensional nature and links
effectively to each of the stories above.

The cross product in −2 � × Vr provides a simple rule
of thumb: there is deflection only when a component of
the relative motion (Vr ) is perpendicular to the rotation
(�). Consequently, objects moving parallel to the rota-
tion axis are not affected (Persson, 1998, 2002d). The
cross product also indicates that the Coriolis force, per-
pendicular to the motion, will tend to drive any moving
object into a so called inertia circle of surprisingly small
sizes, in the mid-latitudes around 100 km for motions of
10 m s−1.

Since the Coriolis Effect is proportional to the sine of
latitude, the radius of curvature of the inertia oscillations
is larger towards the equator than toward the poles.
This makes the circular oscillation open up westward,
introducing the ‘β-effect’, a slow drift on the motion
against the Earth’s rotation (Persson, 2002d).

A.3. Refutation of incorrect derivations and
explanations

Effective communication demands that popular miscon-
ceptions be addressed. George Hadley might have been

the first to point to the importance of the Earth’s rota-
tion for the general circulation of the atmosphere, but
he was wrong to assume that the governing principle
was conservation of absolute velocity. Since this is an
easily understandable and therefore very popular expla-
nation some effort must be spent to show that it has
nothing to do with the Coriolis Effect (Persson, 2009). A
mathematically interesting curiosity is a widespread and
popular derivation of the Coriolis Effect which combines
mathematically two intuitively appealing, but erroneous,
assumptions and gets the right answer because the errors
cancel out (Persson, 2002c).

A.4. Laboratory experiments

The deflection of a ball rolling over a turntable will
only be partly due to the Coriolis Effect because the
centrifugal effect is also present. The trajectory is an
ever-widening spiral, instead of being confined to a
small inertia circle. To study the pure Coriolis Effect
it is therefore necessary to deform the flat turntable
into a parabolic dish rotating around a vertical axis
(Figure 4). The inward gravitational acceleration along
the surface of the dish then exactly balances the outward
centrifugal acceleration (Persson, 2000b). Durran and
Domonkos (1996) provide a detailed account of how such
an experiment can be conducted.

Another illuminating laboratory experiment involves
a coloured liquid dropped into a water tank. When the
tank is stationary the water is totally coloured, when it is
rotating the coloured liquid is constrained by the Coriolis
Effect in so called ‘Taylor Columns’ (Persson, 2001a;
McNoldy et al., 2003; Illari et al., 2009).

A.5. Observational evidence

Drifting buoys in the oceans follow circular or cycloid
trajectories (dependent on the presence and strength of
ocean currents) and provide observational evidence of
the Coriolis Effect (Persson, 2001b, 2001c). The diurnal
veering of the sea breeze or nocturnal jets are perhaps
the best examples of almost pure Coriolis effects.

More complex atmospheric phenomena involve the
pressure gradient force and the resulting (quasi-)

Figure 4. A ball is observed from outside, i.e. in the non-rotating
frame, rolling over a flat merry-go-round (left), the same viewed from
inside, i.e. in the rotating frame, (centre). In this case the ball will
eventually disappear out of sight in an ever widening spiral. In the third
image (right) the motion is viewed from inside a concave, parabolically
shaped merry-go-round. In this case only the Coriolis Effect would be
at work and the relative motion is confined to a small (inertia) circle.
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geostrophic balance will disguise the pure Coriolis Effect.
However, the cycloid shapes of large-scale jet streams
reveal their connection to inertia circles and thus the Cori-
olis Effect (Persson, 2001c). The latitude dependence of
the Coriolis Effect, the ‘β-effect’, contributing to a west-
ward drift of all motions (Persson, 2001b, 2002e) is most
clearly manifested in the asymmetric oceanic gyres (the
Gulf Stream and the Kuroshio Current).

A.6. Non-observational evidence

Also, absence of observations can sometimes be illumi-
nating. In the 1960s American and Russian space engi-
neers thought they had found a way to create artificial
gravity for their crews through the centrifugal action
of rotating space platforms as depicted in the introduc-
tory sceneries in Stanley Kubrik’s film ‘2001 a Space
Odyssey’. However, at about the same time as the film
was completed (1969) the space engineers realized it
would not work, or rather would only work as the long
as the passengers stood still. As soon as they moved the
centrifugal force would change in the way described by
Coriolis in 1835. Since the rotation of the space station
would be on the order of 103 faster than the Earth’s rota-
tion and the Coriolis force correspondingly 103 stronger,
centrifuges and other fast moving machinery might mal-
function. The passengers on board would have problems
walking and also get motion sick. What a better example
that the Coriolis Effect is not an optical illusion!
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