
no green hills nor woods and, during what I
took to be a steeply banked turn out to sea, I
decided to momentarily transfer my gaze from
the tail plane of the leader’s aircraft, some 6 ft
2m above and 10 ft 3m ahead, and look

around a little. All I saw was a dense grey,
totally without detail, depth or horizon, and
the result was immediate vertigo, disorienta-
tion and nausea, so that, on the assumption
that my gallant leader was not about to dive
into the sea, taking us with him, I immediately
switched my attention back to the tail plane of
his aircraft, upon which my stomach instantly
returned to normal!

On the whole, rain has not much affected
my flying, but there was one notable exception
when, lined up on the middle of the runway
ready for take-off, it was most interesting to
discover that the rain was so heavy that forward
visibility was reduced to less than 50 yards
46m , only one of the runway centre line

markings being visible. To each side was initi-
ally grey, blurring into green, while everywhere
the rebounding splashes from the rain gave the
impression that the runway was a 6 in 15cm
deep pool of water. However, I was the

possessor of a Master Green instrument rating,
which gave me the opportunity to make my
own decision as to whether or not to take off,
and I decided to go. The runway was fitted
with a barrier, this being something rather like
a tennis net which normally lay on the ground
some 75 yards 69m from the end of the
runway, brought up to the vertical by two
hydraulically operated steel posts. Having
accelerated to about 80kn in an enormous
cloud of spray, it was not very comforting to
hear my chum, who had started his take-off
run some 15 seconds earlier, call `̀ Barrier, bar-
rier’’ over the radio. In the few seconds pre-
vious to this call, I had seriously been
considering aborting the take-off, but a fully
extended barrier net, full of my friends’ air-
craft, was not an enticing prospect so, realising
that there was no option, we just had to keep
on going. Fortunately for me, that is still the
case, whether power flying or gliding Fig. 2 I
am able to keep on going!

Correspondence to: Mr R. G. Gregory, 35 Fair
Green, Diss, Norfolk IP22 4BG.
# Royal Meteorological Society, 2003.
doi: 10.1256/wea.188.02

Proving that the earth rotates: The Coriolis
force and Newton’s falling apple
(Coriolis Part 9)

Anders Persson
Söderköping, Sweden

`̀ All bodies that are put into a direct and
simple motion, will so continue to move
forward in a straight line, till they are by

some other effectual powers deflected and bent
into a Motion, describing a Circle, Ellipsis, or
some other more compounded Curve Line.’’

Robert Hooke, An attempt to prove the
motion of the earth, 1674.

In the previous articles on the Coriolis effect

we have seen how, due to the earth’s rotation,
horizontal motions are deflected at right angles
horizontally and, for west± east motion, also
vertically. To complete the picture we might
inquire how vertically dropped or launched
objects are deflected ± a topic that intrigued
scientists for centuries.

During the seventeenth century the possible
deflection of falling objects was considered as a

Continued on p. 269.
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# Philip A. Leigh

Numerous contrails lit by the morning sun over Ellel, Lancaster, at 0815 GMTon 19 December 2002

# Mark T. M. Roberts

Dense cirrus cloud over Kuvula, Uganda, in June 1998

265

Weather Vol. 58 July 2003



# J. F. P. Galvin

Brilliant sunset on a receding cold front over Newton Abbot, Devon, on 10 November 2002. Unusually, it is almost
possible to imagine the frontal surface sloping away to the left in this picture.

# Paul Turner

Mamma clouds following a severe storm on 1 March 2003 over Newport, Shropshire. The cloud formations were
unusual and formed a talking point for many people in the area.
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# C. R. Stevenson

Line of high stratocumulus and an extensive area of altocumulus with virga at 2100 BST on 26 July 2002 over
Raunds, Northamptonshire. Note that the low sunlight is lighting the base of the altocumulus only where there are
small gaps in the line of stratocumulus, giving the appearance of radiating lines.

# E. M. Squires

Stratus in the Arve valley, Haut Savoi
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Fig. 1 The Lynmouth storm by Geoffrey Webb. A copy of the painting hangs in the Royal Meteorological Society
headquarters. See letter on p. 281.

Fig. 2 `̀ Sunsets and dawns’’. Early-morning mist over the lake, Whiteknights Campus, University of Reading,
on 1 January 2000, following a clear still night. # Diane Arnold. See letter on p. 280.
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way to prove or disprove the Copernican
theory that the earth rotates and not the stars.
The anti-Copernicans claimed that, if the earth
was spinning around its axis, an object dropped
from a tower would be l̀eft behind’ , i.e.
deflected to the west. Galileo argued that this
was wrong since the object would take part in
the earth’s rotation; but, he added, since the
rotational velocity at the top of the tower would
be slightly larger than at the surface, the falling
object would actually overtake the tower and
land slightly to the east of it Fig.1 . If we put
Galileo’s reasoning into mathematics, we will
find that an object dropped from 100m will,
as seen from outside the earth, follow a
parabolic path and be deflected 3cm. Such
small values were at that time difficult to
confirm by measurements.*

The Coriolis deflection

Actually, the deflection according to Galileo’s
method is not quite correct and yields results
which are 50% too large. We can understand
this in two ways. The first is by treating the
deflection as a consequence of the Coriolis
effect Fig. 2 . The second way is to start from

Galileo’s approach, but to take into account
that during the fall gravity will not point in the
same direction. Due to the shape of the earth it
will change with a component pointing increas-
ingly back towards the starting point Fig. 3 .

The `backward’ acceleration reduces the
3cm deflection by 1cm to 2cm, just as given

Fig. 1 A tower at the equator of height h rotating with
the earth with radius R and angular velocity has a
velocity of R at the base and R+h at the top. An
object falling from the top of the tower with an accelera-
tion g will have a horizontal velocity excess of h,

which, over the time of the fall, t ˆ 2h
g , will carry the

object a horizontal distance, S1 ˆ 2
8h3

g . Away from

the equator the deflection is proportional to the cosine of
the latitude.

* For in-depth analyses of the seventeenth-century
complex, and often confused, debates on the deflec-
tion of falling objects, see KoyreÂ 1955, pp. 358±
395 , Burstyn 1965, pp. 52± 69 and
Armitage 1947, pp. 343± 346 .

Fig. 2 The velocity, w = gt, of a falling body can be
split up into one component, wsin’, parallel to the earth’s
axis, and another component, wcos’, perpendicular to
the earth’s axis. The first will not be deflected since it is
parallel to the rotation axis, the second will be deflected to
the right east , by a Coriolis force ± 2 wcos’ per unit
mass . Integrating this over the time of the fall from a

height h yields a deflection S ˆ ’
3

8h3

g .

Fig. 3 The trajectory of a falling object, seen from out-
side the earth. Due to the curvature of the earth the object
will be affected by a component of gravity, g, pointing
towards the centre of the earth. This backward accelera-
tion, a, can be written a ˆ ¡gsin t º g t, which,
integrated over t, the time of the fall, yields

S2 ˆ ¡ 6
8h3

g which, added to S1, gives the correct

deflection, S. Part of this explanation can also be used to
calculate the deflection of an object shot vertically
upwards with a velocity V0, reaching a height h. Since
there is no excess velocity, the only deflective mechanism
is the changing direction of gravity yielding a westerly
deflection twice S2 or 4V0

3 /3g2 .
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by the Coriolis effect.* More interestingly,
retarded in its eastward motion, the object will,
seen from outside the earth, follow an elliptic
path French 1971, pp. 591± 592 . This is,
according to Kepler’s laws,{ the same type of
curve that orbiting moons or planets follow
Fig. 4 . This is no coincidence: the Coriolis

effect and Kepler’s laws are different ways of
expressing the fundamental law of conservation
of angular momentum.

‘‘A fancy of my own’’

The Italian debate fuelled the interest in the

problem in England, and in 1674 Robert
Hooke published a book entitled An attempt to
prove the motion of the earth. It was in his
capacity as the newly elected Secretary of the
Royal Society that Hooke, in November 1679,
wrote a letter to Isaac Newton. The intention
was to draw Newton into a discussion on
planetary motion; but Newton had something
else on his mind, what he called `̀ a fancy of my
own’’ ± the deflection of objects dropped from
a high altitude as proof of the earth’s rotation.
Much later in his life Isaac Newton told his
friends that it was watching apples fall from the
tree in his family garden that made him
speculate about earthly bodies and the moon
being attracted by the same gravitational
forces.* There are no reasons to doubt this;
scientific ideas can grow out of childish inspira-
tion. What has made scholars sceptical{ is
Newton’s claim that the event took place in
1666, at a time we know that he was develop-
ing ideas in mathematics and optics. However,
if we place the f̀alling apple event’ 13 years
later, in 1679, it gains much more credibility.
Newton had spent most of that summer and
autumn at his family home in Lincolnshire. His
mother had just died and he had to attend to
family matters. There had been a lot of oppor-
tunities to see apples fall in the family garden.

The elliptic path

The exchange of letters with Hooke that
followed during the winter of 1679/80 shows
that Newton had not yet achieved a deeper
understanding of celestial mechanics. His first
idea was that a falling object would, in prin-
ciple, approach the centre of the earth in a

Fig. 4 Trajectory of a falling object at the equator, seen
from outside the earth by an observer situated above the
North Pole. The trajectory is elliptic, just like the orbits of
the moon around the earth or the planets around the sun.

* See Wild 1973 and Stirling 1983 for two short
and illuminating discussions on different ways to
derive the equations of vertically dropped or
projected bodies.

{ Kepler had never extended his planetary laws to
the neighbourhood of the earth Lohne 1960, p. 8 .
It was not until the late eighteenth century that it
was realised that his Second Law, the `̀ Law of
areas’’ , could also be applied to earthly objects and
as such it became known as `̀ conservation of angular
momentum’’ .

* Newton told three different persons the same story
around 1726, 60 years after the alleged event, at a
time when he was engaged in priority arguments
with other scientists see Gjertsen 1980, pp. 29± 30;
Cohen 1980, pp. 230± 231; Westfall 1980, p. 154;
Hall 1992, pp. 53± 54 .

{ The scholars agree that we must settle on late 1679
as the crucial formative period in the development of
the astronomical ideas which were to be synthesised
in Principia Cohen 1980, p. 222; Westfall 1980,
p. 155, 1992, p. 64; Whiteside 1964, p. 120; Lohne
1960, p. 34 .
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spiral. Thanks to Hooke* he came to realise
that it would follow an elliptic path as in Fig. 4.
From this insight ± that a falling object follows
the same type of orbit as any of the planets
around the sun ± it is not far-fetched to infer
that the motions of all these different bodies
might be controlled by the same mechanism.
Still, even for a genius like Newton, it took a
few more years for the penny to drop.{ He
never discovered the Coriolis effect, but found
instead the three laws of motion.

Gauss and Laplace

More than a century later there was a renewed
interest in the problem of the deflection of
falling objects. In 1803 an experiment,
dropping iron pebbles in a 90 m deep mine
shaft, was conducted in Schlebusch, Germany.
The event attracted the interest of the scientific
community, and the 24-year old German
mathematician Carl Friedrich Gauss and the
53-year old French mathematician Pierre
Simon de Laplace volunteered to calculate the
theoretically expected deflection Fig. 5 .

There was a strong element of competition
since Gauss had the year before managed to
calculate the orbit of the newly discovered
asteroid Ceres, something Laplace had deemed
impossible. Both came up with the right answer
by deriving the full three-dimensional equation
for motions on a rotating earth. They specific-
ally pointed out that the Coriolis terms as we

call them were responsible for the deflection
Laplace 1803; Gauss 1804; Benzenberg 1804;

Hagen 1912 . Gauss and Laplace were the first
scientists to contribute to the proof of the
rotation of the earth some 50 years before
Foucault’s famous pendulum experiment, and
to analyse correctly the relative motion in
connection with rotation 30 years before
Coriolis’s mathematical paper.

Erroneous treatments

The problem of the deflection of falling bodies
is not trivial. Even the authorities can get it
wrong. In the 1960s the problem of the
deflection of a falling object was given in a
nationwide Swedish school examination on the
assumption that it could be solved in the
incomplete way depicted in Fig. 1. The
protests from the physics departments at the
universities taught Swedish school admin-
istrators a healthy respect for the Coriolis force
Falk 1983 . I have found two non-Swedish!

university books on physics, which confuse the
issue by considering the apparent deflection of
an interstellar object, such as a meteorite, hit-
ting the earth. Since the meteorite does not
take part in the earth’s rotation, approaching
the earth it will, to an earthbound observer, be
seen to deviate to the west.

Gyroscopic terms

We can now summarise the three-dimensional

*Nauenberg 1994 has made a strong case for
RobertHooke’s `̀ remarkablephysical understanding’’
based on numerous experiments having a crucial
importance to the development of Newton’s
thinking.

{ For most of the 1600s Kepler’s First and Second
Laws were not widely understood or accepted, even
by Isaac Newton. It was during his work on Principia
in the mid-1680s that he came to realise their validity
Whiteside 1964, pp. 121 and 128± 131 but also their

shortcomings. It was, for example, only in 1685/86,
when he questioned one of the fundamental parts of
Kepler’s theory, that he was able to formulate his
Third Law. He then realised that the trajectory of an
orbiting planet has its focus in the common centre of
mass of the sun and the orbiting planet, and not just
in the centre of the sun as stated by Kepler Cohen
1992, pp. 234± 236 .

Fig. 5 Cluster of the hits from the Schlebusch
experiment 1803. A cross marks the theoretically derived
deflection. From Hagen 1912.
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Coriolis deflections for different motions in an
array where the mathematical terms have, for
simplicity, been indicated only by their signs ±
see Table 1.

The three-dimensional Coriolis terms or, as
Lord Kelvin called them, `gyroscopic terms’ ,
play an important role in general laws
concerning the stability of rotating systems
Sommerfeld 1952, pp. 168± 169; Lyttleton

1953, p.17 . The gyroscopic terms can, if
sufficiently strong, render a system stable when
the usual energy conditions would indicate
instability. In other words it is the three-
dimensional Coriolis effect which provides a
`gyroscopic resistance’ to children’s spinning
tops; but that is another story, perhaps to be
told at some other time.
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Table 1 Three-dimensional relation between the
motion on a rotating planet and the Coriolis
deflection

Northward
motion

Eastward
motion

Downward
motion

Northward
deflection

0 ± 1 0

Eastward
deflection

1 0 1

Downward
deflection

0 ± 1 0

The number 0 means no deflection, 1 means deflec-
tion in the indicated direction and ± 1 deflection in
the opposite direction. For example ± 1 in the upper
row represents both eastward motion deflected
southwards and westward motion deflected north-
wards. The deflections which involve vertical
motions are proportional to the cosine of the
latitude, while those which do not involve vertical
motions are proportional to the sine of the latitude
and hence change sign across the equator.
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